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Abstract—Autonomous robots demand complex behavior to
perform tasks in unstructured environments. In order to meet
these expectations efficiently, it is necessary to organize knowl-
edge of past interactions with the world in order to facilitate
future tasks. With this goal in mind, we present a knowledge
representation that makes explicit the invariant spatial relation-
ships between sensorimotor features comprising a rigid body and
uses them to reason about other tasks and run-time contexts.

I. INTRODUCTION

Intelligent agents embedded in a dynamic, uncertain envi-
ronment demand dexterous behavior. To meet these expec-
tations, one needs to address a set of problems associated
with real-world environments: knowledge of the environment
is incomplete and approximate; sensing is limited and noisy;
the dynamics of the environment are only partially predictable.
Classical AI planning approaches [1] are inadequate in this
setting, especially with respect to realtime decision-making
and control. On the other hand, purely reactive control systems
(e.g., [2], [3]), while responsive to environmental stimuli,
suffer from limited access to global state information. Plan-
ning, learning and control need to be essential components
of any robot system performing dexterous behavior, yet they
have long been studied in isolation. This is due to the lack
of a common representational framework that allows the
robot to autonomously interact with the world in a manner
that supports all three. In this paper, we present a solution
to this representational issue by using a functional model
of interactions with the world. The robot acquires control
behavior, uses the acquired skills as the representational basis
for control knowledge, and then builds plans in this space of
control actions.

Actions in this framework are closed-loop controllers con-
structed from combinations of sensors, effectors, and potential
functions. Programs (schemas) are written using combinations
of actions. In prior work, we demonstrated how schemas
are automatically acquired using intrinsically motivated rein-
forcement learning [4]. In this paper, we show how objects
in the environment can be modeled as spatial and temporal
distribution over actions. We then present an information
theoretic algorithm for task-driven action selection wherein
models support choosing actions that produce the greatest
reduction in uncertainty.

Section II describes the mathematical framework for rep-
resenting sensorimotor programs (and compositions of them)
in terms of schema. Section III shows how these control pro-
grams can be used by the robot to organize knowledge about
objects in the world. An algorithm that uses these models
to select informative actions is then presented. Section IV
presents experimental results utilizing the described approach
for manipulation tasks.

A. Related Work

Representing knowledge about the world in terms of con-
trollable interactions provides a powerful and computationally
efficient way for an agent to encode its experiences. Psychol-
ogist J. J. Gibson introduced the term affordance [5] as all
action possibilities latent in the environment, objectively mea-
surable in relation to the actor and therefore dependent on their
capabilities. He presented an interactionist view of perception
and action that focussed on the information that is available in
the environment. The use of affordances within autonomous
robotics is mostly confined to behavior-based control, and their
use in deliberation remains a largely unexplored area. Since
the formulation of the theory of affordances, a great deal of
work has been done to formalize this concept in a manner that
can be modeled computationally. Specifically, Stoytchev [6],
[7] and Fitzpatrick [8] showed that affordance learning can be
used to differentiate objects in the course of interaction with
the environment. Stoytchev’s and Fitzpatrick et al.’s work
uses affordance as a higher level concept, which a developing
cognitive agent learns about by interacting with objects in the
environment. Montesano et al. [9] presented an affordance
based model based on Bayesian networks that linked actions
and their effects to object features.

Modeling the stable perceptual features and relationships
between features of rigid body objects is a long-standing prob-
lem in computer vision, robotics, and artificial intelligence.
In computer vision, there have been enhancements to both
place recognition [10], [11] and scene segmentation [12] by
modeling the spatial relationships between objects. Specific
to object pose estimation, Maji and Malik [13] developed a
probabilistically weighted Hough transform in which parts of
an object cast votes for the object’s pose weighted by the
likelihood of each feature appearing at a specific position on



that object. In a similar fashion, [14] investigated using easy-
to-find objects as contextual priors for finding items that are
more difficult to locate. These studies relate to our work in that
we will be using evidence and knowledge about relationships
between perceptual features, object identity, and object pose to
increase or decrease beliefs about object properties and action
goals.

Uncertainty is a key issue when determining object and
action parameters. Ek et al. [15] presented a system which
is able to infer the commanded task and reason about action
selection given information derived from partial observations.
In this work, an optimal perceptual action is defined to be
the action that will maximally disambiguate (reduce entropy
over) the state-space. In [16], Dragiev et al. utilize Gaussian
processes to dilate expectation for object pose in the context
of reaching and grasping tasks. Recently, Petrovskaya et
al. [17] presented the Guaranteed Recursive Adaptive Bound-
ing (GRAB) algorithm for efficient approximate inference,
which was tested in the context of a manipulation environment
by accurately localizing an object’s pose from a set of relative
sensor measurements. Similar to this work, [18] developed
a decision theoretic framework for task-driven exploration
with POMDPs in which their system iteratively minimizes
uncertainty in object pose by probing an object. In contrast to
these systems, we propose a system that suggests new actions
based upon the expected decrease in uncertainty with respect
to a task, represented by the successful completion of another
action. This formulation is able to exploit past interactions
from multiple objects, environments, and tasks, as well as,
reason about the predicted effects of selected actions.

II. CONTROL PROGRAMS - SEARCHTRACK

Primitive control actions, c ≡ φστ are closed-loop feedback
controllers constructed by combining potential functions, φ,
with feedback signals, σ, and motor resources, τ . The sen-
sitivity of the output of the potential function to changes in
the motor variables provides a control gradient that is used
to derive reference motor inputs (uτ ). Events in the error dy-
namics of each controller provide a natural discrete abstraction
of the underlying continuous state space [19]. In this work,
we employ a four-valued control state, p(c) ∈ {X,−, 0, 1},
where ‘X’ indicates unknown control state, ‘−’ indicates that
the reference signal is not available, ‘0’ indicates the tran-
sient control response and ‘1’ denotes convergence/quiescence.
Given a collection of n distinct primitive control actions, a
discrete state space S can be formed, where s ∈ S is defined
by s = (p1, · · · , pn).

There are two distinct types of actions that share potential
functions and effector resources, but are distinguished by the
source of their input signals : TRACK and SEARCH. TRACK
actions, φστ preserve a reference value in the feedback signal
e.g., the position of a feature on the image plane or the value
of a contact force on a fingertip. SEARCH actions are of the
form φσ̃τ (sharing potential functions and effector resources
with their TRACK counterparts). Their input, σ̃, is derived
from probabilistic models describing distributions over effector
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Figure 16.2 Panel (a) shows the image from Dexter’s left camera while tracking a motion cue. Panel (b)
shows the resulting distribution Pr(reward(motionφtrack

pt )|pan, tilt) after 50 presentations.
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Figure 16.3 Action schemas that represent SearchTrack behavior in terms of abstract state
[ psearch ptrack ]. A new Search goal is sampled whenever Search is executed from states for which
psearch = (X ||1) (designated by small circles). The schema in panel (a) uses only primitive control actions,
in panel (b) co-articulated actions are permitted as well (S and T are shorthand for Search and Track,
respectively). Transitions indicated in red receive the intrinsic affordance discovery reward. The abstraction
in panel (c) summarizes the net behavior of SearchTrack using the same abstraction applied to primitive
controllers.

Fig. 1. SEARCHTRACK behavior in terms of state [psearch ptrack]. A
new SEARCH goal is sampled whenever SEARCH is executed from states for
which psearch ∈ {X, 1} (designated by small circles).

Fig. 2. Sequential programs can be learned by sequencing a set of
previously learned SEARCHTRACK schemas. The robot learns how to “grasp”
by sequencing two different SEARCHTRACK schemas that establishes spatial
features in SE(3) followed by invariants in the force/moment domain
associated with prehensile behavior. The ‘+’ sign for the first schema indicates
that the robot might need to track multiple different spatial features before it
can reliably track a force.

reference inputs (uτ ), where rewarding TRACKing actions
have been discovered in the past, p(φστ ) = 1. For example,
such a controller can be used to direct the field of view of
a robotic system to look at places on a table top where a
coffee cup has previously been found. Initially the distribution
Pr(uτ |p(φστ ) = 1) is uniform; however, over the course of
many learning episodes, this distribution reflects the long term
statistics of the run-time environment.

In Figure 1, an abstract SEARCHTRACK control action
(schema) is illustrated. Action S / T is a concurrent com-
bination of SEARCH and TRACK actions, where SEARCH is
executed in the nullspace of TRACK [20]. The policy begins by
attempting to concurrently SEARCH for and TRACK a specific
cue. If this cue exists in the signal, the policy attempts to
continue TRACK-ing. If no target is immediately available, the
policy samples new configurations from the search distribution
Pr(uτ |p(φστ ) = 1) until the target stimulus is found; at which
point, the policy tracks the feature.

Hart et al. [21] presented a detailed description of the
various manipulation programs (touching, grasping, picking
up, placing and inspecting objects) that can be learned in
a hierarchical fashion from previously acquired control pro-
grams. All of these programs can be viewed abstractly as
a sequence of SEARCHTRACK programs that are used to
find and track groups of visual and tactile features. Figure
2 shows a hierarchical schema learned by the robot to reliably
track a reference force using its end effector. The learned
program involves concurrently tracking multiple visual stimuli
(indicated by the ‘+’ symbol for the first schema) followed
by a SEARCHTRACK schema that tracks forces using finger-
tip mounted tactile sensors. In this hierarchical schema, the



Cartesian feature position tracker becomes part of the search
behavior that orients the robot to receive a TRACK-able force.

Our computational framework acquires programs for con-
trolling interaction with the environment and manages redun-
dant sensory and motor resources to discover and maintain
interactions in dynamic environments. The acquired control
programs and their long term statistics represent a domain
general way of interacting with stimuli in the environment.
The schemas capture common sense knowledge acquired by
the robot. The environment, however, presents important kinds
of structure in terms of objects — sets of affordances with
invariant spatial relationships (co-affordances). In the next
section, a Bayesian framework for acquiring these domain
specific knowledge structures in terms of distributions over
SEARCHTRACK programs is presented.

III. CONTROL CO-AFFORDANCES - OBJECTS

Objects in this representation are modeled as spatial and
temporal relationships between control affordances. Figure
3(a) shows a graphical model that encodes the logical depen-
dencies between the variables of the environment affordance
model. An object, O, at any instant of time affords a set of
controlled interactions with the robot. This set of spatially
distributed interactions define an object aspect (OA). For
each aspect, there exist Mj affordances that have a non-zero
probability of occurring. There can be multiple instances of
each aspect within an object. Each affordance is represented
by a Bernoulli random variable pj describing the state of
each associated SEARCHTRACK action. (pj = 1, if the action
converges, and 0 otherwise.) Each possible affordance is
modeled by its position and orientation (hj) in the object’s
frame, the feature values of the signal (fj), and the shape
(gj) defined by the eigenvalues of the signal. The resulting
generative model describes objects in terms of affordances and
the spatial relationships between them.

Utilizing past experience encoded as a prior, this model
is able to aid in accomplishing a variety of tasks by telling
the robot which affordances are likely to co-occur and where
they occur with objects that are similar to those that have
been previously encountered. However, there is no knowledge
being stored that will describe how taking actions affect the
existence and location of affordances. For e.g., a hammer’s
handle affords grasping, however, if the handle is out of reach,
the robot might have to pull the hammer closer before it
can succeed in grasping it. In this case, “pulling” changes
the aspect of the object in a manner that supports the goal
of grasping. We encode the aspect-action dependencies of
an object as a Hidden Markov Model(as shown in Figure
3(b)), where the instance of an aspect being observed is a
hidden variable that the robot can infer from state of the
affordances, st = {p1, . . . , pk} and the actions, at. This
temporal model consists of a finite number of states (given
by the aspect instances, OAt), a finite number of actions
A = {a1, a2, . . . , ak} and a set of possible observations.
For every aspect instance, OAt , the transition probability
T (OAt, at, OAt+1) describing the probability that an aspect

Algorithm 1 TASKGOAL(ag, E,G)
1: repeat
2: Compute all possible matches of evidence, Em ⊆ E,

to model, G
3: Compute least squares pose estimate of the object, xO ∈

XO, for every match, em ∈ Em
4: Update posterior over object aspects, Pr(OA |Em).
5: Compute the position, xg , of goal affordance, ag , for

each of the candidate poses xO ∈ XO.
6: if all candidate poses vote for the same set of goals

then
7: if goal pose, xg , can be achieved by the robot then
8: execute goal, ag
9: else

10: Choose action, anext from the HMM which
changes the object aspect to one which affords the
goal.

11: Execute action, anext
12: end if
13: else
14: Choose action, anext from the HMM which maxi-

mally reduces the uncertainty over aspects.
15: Execute action, anext
16: end if
17: Gather new evidence, E
18: until p(ag) = 1 {Goal Action Succeeds}

at time t transitions to another aspect instance at time t + 1
by taking manipulation action, at.

A. Task Specific Action Selection

Reference values for each control action can be sampled
from the Bayesian model. These actions can then be executed
given knowledge of the object’s pose in the world frame. How-
ever, it is not necessary for a robot to completely determine the
pose of an object before it can take actions towards achieving
its goal, it is only required that the pose relative to the goal
action is completely determined. The procedure for taking such
an action (ag) is described in Algorithm 1.

Given a task and an object model, the robot first accumulates
evidence for all of the actions with minimum cost that are
afforded by the object. The inference algorithm proceeds by
finding the best possible matches, Em, of the evidence to the
model (Line 2). This is achieved by computing the likelihood
that the evidence (control action with a particular feature value
and shape) can be generated by the model. For each match
em ∈ Em, a least squares estimate of the object pose, xO,
is computed using the point value estimate of the affordance
positions [22] (Line 3). If the same evidence is afforded in
multiple regions of the object, a set of candidate poses, XO,
are returned (of which only one is the correct pose). Each of
the candidate poses is combined with relative spatial informa-
tion from the object model to produce candidate positions and
orientations of the goal (Line 5). For example, if the goal
is to grasp an object, this relative information is provided
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Fig. 3. Panel (a) shows a Bayesian network model G representing object O as a spatial distribution over Mj control affordances. The multinomial random
variable OA represents the aspects of the object. An aspect induces a distribution over the state of controllable interactions (pj ) afforded by the object. The
random variables fj and gj model the signal value (e.g., color, force) and shape of the signal (eigen values) as gaussian distributions. The gaussian random
variable hj models the position and orientation of the affordance instance in the object frame. Panel (b) shows a dynamic Bayes net diagram representing
graphically the relations between the different parts of the temporal model of the aspect instances, OAt to state of the affordances, st and manipulation
action, at. (Shaded nodes are observed, clear nodes are hidden).

by SEARCH distributions for the arm(s) and hand(s) relative
to the object frame that orient the system appropriately for
TRACK-able forces comprising a grasp. Each candidate pose
is modeled as a mixture of gaussians. If all the candidate poses
vote probabilistically for the same positions and orientations
of the goal in the world frame (Line 6), we say that the
candidate goals are equivalent and unambiguous. Hence, even
though there is uncertainty in the pose of the object, there is
none in the goal affordance. Such cases arise in the case of
symmetric objects, where the pose of the object may remain
ambiguous even when grasping goals are not. If goals are
ambiguous, then actions are selected that reduce uncertainty
with respect to the target action to the greatest degree. This
is done by using the temporal model as a forward model for
predicting the next action to execute that maximally reduces
the uncertainty over aspects. This is achieved by computing
the posterior over the hidden aspect instances, OA (Line 4),
and then using the transition probabilities, T for selecting the
action a ∈ A that will maximally reduce the entropy over the
aspect posterior (Line 14). Furthermore, the above model is
also used for planning sequences of actions that can change
the aspect of the object to one that affords the goal (e.g., for a
grasping task, if the goal is out of reach, the model can predict
the sequence of actions that change the aspect of the object to
one where a grasp can succeed). This process is repeated until
the robot believes that there is no information to be gained by
taking more actions in the context of the given task (ag) or,
until the recommended course of action is sufficiently certain.

IV. EXPERIMENTS

We demonstrate the applications of the above approach
on our experimental platform, Dexter. Dexter is a bimanual
robot with two 7-DOF Whole-Arm Manipulators (WAMs)
from Barrett Technologies, two 3-finger 4-DOF Barrett Hands
equipped with one 6-axis force/torque load cell sensor on each
fingertip, a stereo camera pair and a Kinect mounted on a
pan/tilt head.

In this set of experiments, we show the efficacy of our repre-
sentation for utility-driven action selection. Models of objects
were hand-built spatial distributions of blobs (represented in
terms of first and second moments) describing homogeneous
hues, range image blobs, and search distributions of hand goals
in Cartesian space where “grasp” and “touch” affordances
can be found. Grasp affordances are defined by TRACK-able
force closure conditions and touch affordances are defined by
small magnitude TRACK-able force events. For purposes of
illustration, the middle of the mallet’s handle and the middle
of the emergency light were set to afford grasping while
their entire body affords touching. The temporal part of the
object model captures the transitions between aspects when a
manipulation action is executed in the context of each object.
10 trials were conducted for each object, in which the object
was placed in the workspace in a variety of poses. In certain
regions of the workspace, the object does not afford haptic
aspects, and additional manipulation actions have to be taken
before grasp goals can be achieved. Figure 4 and 6 shows
the case when the object is presented in a region where the
robot can grasp successfully. In such a case, the Algorithm
1 computes the pose of the object by matching observations
to the model and returns the estimated goal pose. However,



when the goal affordance is out of reach (and hence the object
aspect doesn’t afford the goal - grasping in this case), the
action selection algorithm chooses a manipulation action that
can change the aspect to one that affords grasping. Figure 5
and 7 shows the two scenarios where the robot chooses to pull
the object towards itself before executing the grasp action.

V. CONCLUSIONS

In this paper, we introduced a knowledge representation
framework that organizes knowledge about objects in terms of
long term statistics of controllable interactions. We presented
how objects in the environment can be modeled as temporal
distributions over spatially related co-affordances. Lastly, we
provided experimental results of using this approach for mod-
eling objects and using these models for utility-driven action
selection. The above representation of objects as spatially
structured control affordances provides a powerful mechanism
for action planning. In future work, we plan to extend this
technique to multi-object relationships.
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Fig. 4. The robot performing a top grasp on the object and placing it on the goal.

Fig. 5. The robot pulling the object towards itself before performing a re-grasp on the object and placing it on the goal.

Fig. 6. The robot performing a top grasp on the mallet and placing it on the goal.

Fig. 7. The robot pulling the mallet towards itself before performing a top grasp on the object and placing it on the goal.


