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Object and tool manipulation are related to the ability to modify one’s en-
vironments and are common to many intelligent species. This ability is
an important part of a complete account of intelligence and will likely be
a cornerstone of machine intelligence as well. Moreover, a computational
account of object and tool manipulation may provide insight into the mech-
anisms and processes that give rise to it in nature. Traditional approaches
often consider a pipeline of segmentation, object recognition, and pose es-
timation to be an essential perception stage prior to motor activity. In this
work, we propose an alternative approach to object recognition and pose
estimation.

In computer vision and robotics, object recognition is often defined as
the process of labeling segments in an image or fitting a 3-D model to an
observed point cloud. The object models used to accomplish these tasks
usually include information about visual appearance and shape. However,
what these object recognition systems provide is merely a label for each
observed object. The sequence of actions that the robot should perform
based on the object label are often manually defined. Without linking actions
to object labels these models have limited utility to the robot. In this work,
we propose an object model that is composed of a set of viewpoint-specific
observations to capture how actions change observation of the object.

In most robotics tasks that require manipulating known objects, pose
estimation is often required before planning end effector trajectories. In the
Willow Garage grasping pipeline [6], the iterative closest point algorithm is
used to check how well a segmented point cloud matches to a stored mesh
model. Precomputed grasp points associated with the model are then used
to generate a valid motion trajectory. However, object pose estimation is
often computationally expensive and inaccurate. In addition, there are many
examples of tasks that do not require pose information. This paper proposes
using the aspect transition graph object model that skips pose estimation and
interacts with objects directly based on memory and observation.

1 Object Model

In the past few decades, experiments in psychophysics and neurophysiol-
ogy have provided converging evidence that objects are represented in the
human brain as collections of viewpoint-specific local features instead of
sets of object centered features. It has been shown that when a new object
is presented to a human subject, only a small subset of canonical views are
retained in memory despite the fact that each viewpoint is presented to the
subject for the same amount of time [2] [1]. Experiments on monkeys fur-
ther confirm that a significant percentage of neurons in the inferior temporal
cortex respond selectively to a subset of views of a known object [5].
Closely related to these observations, aspect graphs [3] were first intro-
duced as a way to represent 3-D objects using multiple 2-D views in the
field of computer vision. Extending the original concept of aspect graph, we
introduce the Aspect Transition Graph (ATG) object model that summarizes
how actions change viewpoints and/or the state of the object and, thus, the
observation [4]. We define the term “observation" to be the combination
of all sensor feedback of the robot at a particular time and the “observation
space" as the space of all possible observations. This limits the model to a
specific robot, but allows the model to represent object properties other than
viewpoint changes alone. Extensions to tactile, auditory and other sensors
are possible with this representation. An ATG object model can be used to
plan manipulation actions for that object to achieve a specific target aspect.
For example, in order for the robot to pick up an object, the target aspect
is a view where the robot’s end effector surrounds the object. We expect
that this view will be common to many such tasks and that it can be the
expected outcome of a sequence of open-loop controllers (like moving the
end effector to the same field of view as the target object) and closed-loop
controllers (like visually servoing features from the hand into the pregrasp

e-region of x,

e-region of x,

region of attraction of x, region of attraction of x,

Figure 1: An ATG model containing two aspects x| and x,. The edge labeled
u is a model-referenced memorized action that reliably maps the &-region of
x1 to the interior of the region of attraction of x;.

configuration relative to the object).

An ATG is represented as a directed multigraph G = (X' ,U), composed
of a set of aspect nodes X’ connected by a set of action edges U that capture
the probabilistic transition between aspects. An action edge U is a triple
(X1,X2,A) consisting of a source node X;, a destination node X, and an
action A that transitions between them. Note that there can be multiple
action edges (associated with different actions) that transition between the
same pair of nodes.

Figure 1 shows an example of an ATG model that contains two aspects
X1, xp and one action edge u connecting the two aspects in the observation
space. An aspect is represented as a single dot in the figure. The ellipses
around x1,x, represent the €-region of the corresponding aspect. Inside the
e-region, the observation is close to the target aspect, and is considered
to have “converged". The e-region is task dependent; a task that requires
higher precision such as picking up a needle will require a smaller £-region.
Each aspect x is located in the &-region but does not have to be in the center.
The location and shape of the e-region also depends on the given task since
certain dimensions in the observation space might be less relevant when per-
forming certain tasks.

The larger ellipses surrounding the €-regions are the region of attraction
of the closed-loop controller referenced to aspects x; and x,. Observations
within the region of attraction converge to the e-region of the target aspect
by running a closed-loop controller that does not rely on additional informa-
tion from the object model. In our experiment, a visual servoing controller is
implemented to perform gradient descent to minimize the observation error.
The region of attraction for using such a controller is the set of observations
from which a gradient descent error minimization procedure leads to the
g-region of the target aspect.

The arrow in Figure 1 that connects the two aspects is an action edge
(x1,x2,a) that represents a memorized action. Action a is an open-loop
controller that causes aspect transitions. Instead of converging to an aspect,
open-loop controllers tend to increase uncertainty in the observation space.
Under situations when there is no randomness in observation, action execu-
tion and the environment, executing action a from aspect x; will transition
reliably to aspect xp.

In a system which actions have stochastic outcomes, the arrow in Figure
1 that connects the observation x4 within the &-region of x; to observation
xg represents a scenario where action a is executed when xq is observed.
We define g, as the maximum error between the aspect x; and the obser-
vation xg when action a is executed while the current observation is within
the e-region of aspect x;. €, can be caused by a combination of kinematic
and sensory errors generated by the robot or randomness in the environ-
ment. If the region of attraction of the controller that converges to aspect x,
covers the observation space within ¢, from x,, by running the convergent
controller we are guaranteed to converge within the e-region of aspect x,



Figure 2: Visual servoing. The target aspect is on the left and the current
observation is on the right. A line in between represents a pair of matching
keypoints. The goal is to converge current observation to the target aspect.

under such environment. As long as the transitioned observation is within
the region of attraction of the next aspect we can guarantee convergence to
the desired state even when open-loop controllers are within the sequence.

We call an Aspect Transition Graph model complete if the union of the
regions of attraction over all aspects cover the whole observation space and
a path exists between any pair of aspects. A complete ATG object model
allows the robot to manipulate the object from any observation to one of
the aspects. Complete ATG object models are informative but often hard
to acquire and do not exist for irreversible actions. On the other hand, it
is not always necessary to have a complete ATG to accomplish a task. For
example, a robot can accomplish most drill related tasks without modeling
the bottom of the drill. Therefore, we define an Aspect Transition Graph
object model to be sufficient if it can be used to accomplish all required
tasks with the object. In this work, we will focus on sufficient ATG object
models.

2 Manipulation

Object manipulation of known objects often require estimating the object
pose before calculating grasping points and trajectories. Instead of storing
a 3D model that contains invariant features in the object frame our aspect
transition graph (ATG) model stores a set of viewpoint-specific observa-
tions. Since available actions from one observation to another are modeled
in action edges in an ATG model, object pose estimation is not necessarily
required in order to interact with an object. Given a sufficient ATG model,
object pose estimation may be skipped and the robot can directly interact
with objects based on memorized observations.

In our experiment a visual servoing controller is used to converge from
an observation within the region of attraction to the €-region of the corre-
sponding aspect. The visual servoing controller is used to control the end
effector of the robot to reach a pose relative to a target object using visual
sensor feedback. Unlike many visual servoing approaches, our visual servo-
ing algorithm does not require a set of predefined visual features on the end
effector or target object nor does it require an inverse kinematic solution for
the robot. A visuomotor Jacobian, defined as the derivative of each feature’s
location and orientation in the image plane with respect to the robot’s joint
configuration, is learned online using Broyden’s method. To acheive con-
vergence, the only information required is the current observation and the
target aspect. Figure 2 shows an example where the visual servoing algo-
rithm tries to converge from the current observation on the right to the target
aspect on the left.

In this work, an action edge in an aspect transition graph model repre-
sents a memorized action that performs a movement relative to a point in
observation or an end effector pose of the robot. For example, in one of the
drill grasping tasks shown in Figure 3 the robot is trained to move its hand
first to a pre-grasping pose before moving to a pose that contacts the object
to increase accuracy; the first action edge in this ATG model represents an
end effector movement relative to the center of the paritally observed point
cloud such that the end effector becomes visible at the pre-grasping loca-
tion. The second action edge in this ATG model represents an end effector
movement relative to the last end effector pose such that the end effector
reaches a grasping pose based on the memorized movement. Visual servo-
ing is executed after each open-loop action to minimize the error between
the current observation and the target aspect.

Figure 3: Robonaut 2 grasping the drill posed at different orientations. Im-
age pairs in the same row represents the intermediate and final states of one
drill grasping trial.

3 Experiment

In this work, we tested our approach on a tool grasping task on Robonaut
2. The goal is to have Robonaut 2 use the drill directly with its left hand or
grasp the drill from the top or the side of the drill with its left hand so that
it can adjust the drill to a better grasping pose for the right hand. An aspect
transition graph model of a drill is first created from a teleoperator demon-
stration. Five different grasping trajectories for five different drill orienta-
tions ranging from O to 180 degrees are shown to the robot. One goal aspect
that represents successfully grasping the drill is created and used to connect
all five grasping demonstrations. A grasping test is then performed on 21
random drill poses ranging from O to 180 degrees and within 10 cm from
the original training position. Our approach successfully grasped the drill
19 out of 21 times in this experiment. One of the two failures was caused
by the planner failing to generate a valid trajectory to an intermediate aspect
and the other was caused by failing to reach an intermediate aspect. Figure 3
shows examples of Robonaut 2 grasping the drill oriented at different poses
during testing.
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