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Abstract We introduce a framework where visual features, describing the interac-
tion among a robot hand, a tool, and an assembly fixture, can be learned efficiently
using a small number of demonstrations. We illustrate the approach by torquing a
bolt with the Robonaut-2 humanoid robot using a handheld ratchet. The difficulties
include the uncertainty of the ratchet pose after grasping and the high precision re-
quired for mating the socket to the bolt and replacing the tool in the tool holder. Our
approach learns the desired relative position between visual features on the ratchet
and the bolt. It does this by identifying goal offsets from visual features that are
consistently observable over a set of demonstrations. With this approach we show
that Robonaut-2 is capable of grasping the ratchet, tightening a bolt, and putting the
ratchet back into a tool holder. We measure the accuracy of the socket-bolt mating
subtask over multiple demonstrations and show that a small set of demonstrations
can decrease the error significantly.

1 Introduction

Learning from demonstration (LfD) is an appealing approach to programming
robots due to its similarity to how humans teach each other. However, most work on
LfD has focused on learning the demonstrated motion [14], action constraints [15],
and/or trajectory segments [5] [4] and has assumed that object labels and poses
can be identified correctly. This assumption may be warranted in well-structured
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industrial settings, but does not hold, in general, for the kinds of uncertainty and
variability common in everyday human environments.

We present an integrated approach that treats identifying informative features as
part of the learning process. This gives robots the capacity to manipulate objects
without fiducial markers and to learn actions focused on salient parts of the object.
Actions are traditionally defined as movements relative to the pose of a landmark;
we deviate from this standard and define actions based on informative features. With
additional guidance provided by the operator, the features that support actions can
be identified automatically. With this approach, the robot can still interact with an
object even if 1) the object does not have a global notion of pose, as in the case of
an articulated object, or 2) when the object’s pose is ambiguous but an affordance
of that object can be identified. Two major contributions in this work are as follows.

1. Action demonstrations are classified into three different types based on the in-
teraction between visual features and robot end effectors. This allows robots to
repeat tool usage demonstrations by modeling the spatial relations between vi-
sual features from the tool and the workpiece.

2. An approach that distills multiple demonstrations of the same action to produce
more accurate actions by identifying spatial relations that are consistent across
demonstrations.

We show that a challenging tool use task—tightening a bolt using a ratchet—can
be learned from a small set of demonstrations using our framework. A different in-
hand ratchet pose may result in failure of mating the socket to the bolt if the robot
only considers the pose of the hand and the bolt. The proposed approach learns what
part of the ratchet should be aligned with the bolt by recognizing consistent spatial
relations between features among a set of demonstrations.

2 Related Work

Much research has focused on methods for “learning from demonstration (LfD),”
in which robots acquire approximate programs for replicating solutions to sensory
and motor tasks from a set of human demonstrations. In work by Calinon et al. [5]
[4], Gaussian mixture models are used to model multiple demonstrated trajectories
by clustering segments based on means and variances. In work by Pastor et al. [14],
dynamic movement primitives are used to generalize trajectories with different start
and end point. Instead of modeling trajectories in terms of motion invariants, our
work focuses on learning consistent perceptual feedback that provides informative
guidance for situated actions.

Approaches that learn from multiple demonstrations often require an experienced
user to show a variety of trajectories in order to estimate task information. In work
by Alexandrova et al. [2], instead of generalizing from multiple examples, the user
demonstrates once and provides additional task and feature information via a user
interface. The approach in this paper is similar—the user specifies demonstration
types and the informative features are identified automatically.
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In the work by Phillips et al. [16], experience graphs are built from demonstration
to speed up motion planning. A manipulation task such as approaching a door and
opening it can be planned in a single stage by adding an additional dimension that
represents the degree of opening. However, the demonstrated tasks are restricted
to cases where the object can be manipulated in a one dimensional manifold that
is detectable. In this work, demonstrations are stored as aspect transition graphs
(ATGs). ATGs are directed multi-graphs composed of aspect nodes that represent
observations and edges that represent action transitions. Aspect nodes represent ob-
servations directly and can, therefore, be used to model a higher dimensional space.

ATGs were first introduced in Sen’s work [17] as an efficient way of storing
knowledge of objects hierarchically and are redefined as a directed multigraph to
capture the probabilistic transition between observations in [12]. In previous work
[10], we further demonstrated that ATG models learned from demonstrations can
be used to plan sequences of actions to compensate for the robot’s reachability con-
straint. In this work, we extend the ATG representation to model interaction between
objects and show that by distilling multiple ATGs learned from demonstrations the
accuracy of actions can increase significantly.

In the work by Akgun et al. [1], a demonstrator provides a sparse set of con-
secutive keyframes that summarizes trajectory demonstrations. Pérez-D’ Arpino and
Shah [15] also introduced C-Learn, a method that learns multi-step manipulation
tasks from demonstrations as a sequence of keyframes and a set of geometric con-
straints. In our work, aspect nodes that contain informative perceptual feedback play
a similar role as keyframes that guide the multi-step manipulation. Instead of con-
sidering geometric constraints between an object frame and the end effector frame,
relations between visual features and multiple robot frames are modeled.

In the work by Finn et al. [6], states that are represented by visual feature loca-
tions on the image plane are learned through deep spatial autoencoders. These fea-
tures are then filtered and pruned based on feature presence for manipulation tasks
learned through reinforcement learning. In our work, features are generated from
a network trained on image classification and are selected based on consistency in
response and spatial variance across demonstrations.

There has been a lot of work on developing visual descriptors that are robust to
viewpoint variations [13] [3] [19]. Recently, several papers have investigated learn-
ing image descriptions using Convolutional Neural Networks (CNNs) [7] [18]. In
this work, we use the hierarchical CNN features [11] that can represent parts of
an object that are informative for manipulation. In the work done by Huang and
Cakmak [8], a tool for setting custom landmarks that can represent object parts is
introduced. In our work, object parts are represented by a set of features identified
based on the demonstration type.

3 Approach

In this section, we describe our approach by teaching the robot to use a ratchet
from demonstrations. First, we provide background on the aspect transition graph
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(ATG) that is used to model demonstrations. Second, we describe how we classify
demonstrations into three types. Third, we explain how user demonstrations are
used to build ATG models and how these models can be used for planning. Last,
we illustrate how multiple ATGs created from demonstrations are merged to create
more robust models.

3.1 Aspect Transition Graph Model

In this work, aspect transition graphs (ATG) created from demonstrations are used
to represent how actions lead from one observation to another. An aspect transition
graph (ATG) is a directed multigraph G = (X', U ), composed of a set of aspect nodes
X connected by a set of action edges U that capture the probabilistic transition
between aspect nodes.

We define an aspect as a multi-feature observation that is stored in the model. In
this work, an aspect node stores an aspect representation composed of visual, force,
and proprioceptive feedbacks. The visual feedback is represented by hierarchical
CNN features introduced in [11]. Instead of representing a feature with a single
filter in a certain CNN layer, hierarchical CNN features use a tuple of filter indices
to represent a feature such as ( l_57 fj‘-‘, fk3) where f" represents the i"" filter in the n'”
convolutional layer. These features can represent hierarchcial local structures of an
object and be localized in 3D to suppport actions. The force feedback is based on
load cells in Robonaut-2’s forearms. Force values are projected to the body frame at
10 Hz and averaged over the preceding one-second interval. The force information is
used to distinguish between aspect nodes. The proprioceptive feedback is composed
of robot frames calculated based on motor encoders and is used to support actions.

In previous work, a single object was considered per ATG model [10]. In this
work, we consider multiple objects and their interactions. An aspect node can be
used to represent a particular “view” of an object or a distinctive interaction be-
tween objects. For example, two disjoint feature clusters generated by two objects
are modeled by two aspect nodes, each representing how the robot perceives them.
In contrast, a single feature cluster can span two (partially) assembled objects to
focus on object-object interactions. The ATG representation can therefore model
object interactions that result in transitions between these two types of aspect nodes.

3.2 Demonstration Types

In our learning from demonstration framework, tasks are demonstrated as a se-
quence of actions. An action is represented using a controller in the control basis
framework [9] and is written in the form ¢|¢, where ¢ is a potential function that
describes the error between the current and target robot configuration, ¢ represents
sensory resources allocated, and 7 represents the motor resources allocated. The po-
tential functions are formulated as ¢y = ¥.,cy (v — g,)%, where v and g, are visual
features and goal locations for these features (v, g, € R*) and ¢g = ¥, cr(r — g-)?,
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where r and g, are robot frames and goals for these frames (r,g, € SE(3)). Each
demonstrated action is classified into one of the following three demonstration types
based on the interacting features:

a) The robot-visual action (agy = ¢r|7") specifies the target pose of a set of
robot frames with respect to a set of 3-D visual feature locations. The left column of
Figure 1 shows an example of executing an agy action where the goal is to reach the
ratchet pre-grasp pose. The yellow and cyan dots are visual feature locations in 3-D
based on hierarchical CNN features [11] and the red and green circles represent the
goals for the hand and fingers. The arrows represent the learned offset from features
to goal locations.

Vo

arv app ayy

Fig. 1 Examples of the three demonstration types: robot-visual actions agy, robot-proprioceptive
actions agp, and visual-visual actions ayy .

b) The robot-proprioceptive action (agp = ¢r|3" ) specifies the target pose of a set
of robot frames with respect to a set of current robot frames based on proprioceptive
feedback. The middle column of Figure 1 shows an example of executing an agp
action where the goal is to move the hand relative to the current hand frame so that
the grasped ratchet is extracted from the tool holder. The yellow ellipse is the current
hand pose and the arrow indicates the reference offset derived from demonstration.

¢) The visual-visual action (ayy = Qv |f"/) specifies the goal position of a set of
controllable visual features relative to another set of visual features on a different
object in 3-D. The right column in Figure 1 shows an example of executing an ayy
action where the goal is to place the socket on top of the bolt. The purple dots are
features on the bolt used as references for the goal and the orange dot is the feature
on the socket. The blue dots are goal positions generated based on relative positions
to features indicated by the black arrows. Modeling spatial relations between visual
features achieves the same intended outcome even when the in-hand ratchet poses



6 Li Yang Ku, Scott Jordan, Julia Badger, Erik Learned-Miller, and Rod Grupen

are different. This visuo-servoing approach re-observes after movements until con-
vergence and is therefore more robust to kinematic noise and warped point clouds.

The detected locations of visual features and robot frames are inevitably influ-
enced by noise in the system that may be caused by imperfect sensors or changes
in the environment. This makes tasks that require high precision challenging. To
accommodate this problem we assume that the references for motor resources 7 is
generated by adding zero mean noise N(0, X) to the original reference. By sampling
from this distribution during execution, the controller superimposes an additive zero
mean search to the motion. Such movement increases the tolerance of the insertion
task to uncertainty.

Figure 2 shows the sensorimotor architecture that drives transitions in the ATG
model. The perceptual feedback is used to represent aspect nodes and actions are
executed based on these sensory resources defined in action edges.

Fig. 2 The sensorimotor ar- o7
chitecture driving transitions @ % : @
in the ATG framework. The visual
sensory resources O that rep- 13 fecdback
resent a set of features based conv-5
on visual and force feedback

and op that represents a set conv-4
of robot frames based on pro-

prioceptive feedback are used conv-3
to parameterize actions ¢|J.

In this example, the 5th layer cony-2
hierarchical CNN features o5

are used to control the arm cony- 1
motors T, and the 3rd and

4th layer hierarchical CNN image
features oy3y4 are used to
control the hand motors Thang.

ay

agF op

force proprioceptive
feedback feedback

load cell

pointeloud

3.3 Building and Planning with ATG Models

Each demonstration coupled with information provided by the operator is used
to create an ATG model. Demonstrations are performed through teleoperation, in
which the user drags interactive markers in a graphical interface to move the robot
end effector or change the robot hand configuration. Users indicate intermediate
steps for each demonstration and provide its demonstration type described in Sec-
tion 3.2. The user also has the option to add a search movement to the demonstrated
action. During the demonstration, an aspect node is created for each observed fea-
ture cluster at each intermediate step. A feature cluster can be a single object or
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multiple objects in contact. Based on the demonstration type selected by the user,
the system connects new aspect nodes x; to aspect nodes x;_| created at the previous
time step with action edges that store the demonstrated action a;_.

During execution, the user selects a goal aspect. Based on the maximum a poste-
riori (MAP) aspect node, the next action is chosen based on the first action edge on
the shortest path from the MAP aspect node to the goal aspect node. The posterior
probability is modeled by generalized Gaussian distributions as in [10]. If there is
no valid path, the planner guesses possible paths by merging similar aspect nodes
from the current ATG to other ATGs until a path exists.

3.4 Learning from Multiple Demonstrations

With a single demonstration, there remain ambiguities regarding the goal. For ex-
ample, in the action that puts the socket on top of the bolt, it is ambiguous whether
the demonstration intends to convey a spatial relationship between the socket and
the bolt or some other part of the ratchet and the bolt. With multiple demonstrations,
this ambiguity may be resolved by observing consistent relations between features.
In this section, we describe how to take multiple demonstrations of the same task to
create more robust ATG models. We call these ATGs created from multiple demon-
strations distilled ATGs.

3.4.1 Identifying Common Features

A set of features are stored in the aspect node to represent the observation of an as-
pect. Correctly associating the current observations with a memorized aspect node
is crucial for implementing transitions to goal status. However, not all features pro-
vide the same amount of information. Moreover, some features are more sensitive
to lighting changes and some may belong to parts of the visual cluster that may
change appearance across examples. With a single demonstration, these kinds of
features may be indistinguishable. With multiple demonstrations, common features
can be identified by estimating the feature variance across demonstrations.

Given demonstrations of the same task with the same sequence of intermediate
steps, our approach looks for features that are consistent across multiple demonstra-
tions. For the observations at each intermediate step, the N most consistent features
are chosen. The consistency score is defined as S, =ny/std(f), where ny is the num-
ber of times feature f appears among the matched intermediate steps and std(f) is
the standard deviation of the value of feature f. We score visual features, proprio-
ceptive features, and force features together with weights of 1,1,0.001, respectively.

3.4.2 Recognizing Consistent Actions

For action edges that represent a robot-visual action agy or a visual-visual action
ayy in an ATG model, the action reference is specified in terms of a subset of fea-
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tures stored in the aspect node. As result of a single demonstration, features are cho-
sen based on their proximity to robot frames or features controllable by the robot.
With multiple demonstrations, a more robust set of features can be identified and
used to define the aspect.

For the robot-visual action agy = ¢r|3", the top N pairs of robot frames r € R
and visual features v € V that have the lowest variances in XYZ position offsets are
chosen to represent the action. For example, when learning from multiple demon-
strations of the action that grasps the ratchet, this approach concludes that features
on the ratchet are more reliable than features on the tool holder since the ratchet
may be placed at different positions in the tool holder across demonstrations.

For the visual-visual action ayy = ¢V|§’V’, the top N pairs of visual features in the
tool aspect node v € V and the target object aspect node v/ € V' that have the lowest
variance var(v,V') is selected. var(v,V') is the variance of the XYZ position offsets
between feature v and feature V' after the action across demonstrations. For exam-
ple, the action that places the socket of the ratchet on top of the bolt determines that
a consistent spatial relation exists between the features on the socket and those on
the bolt after executing the action. Figure 3 shows the top feature pairs identified for
constructing a visual-visual action from demonstrations. The robot is able to com-
prehend that the head of the ratchet should be aligned with the bolt autonomously.
Fig. 3 Identifying informa-
tive features from multiple ‘
demonstrations. The two rows
represent two demonstrations “
that place the socket of the
ratchet on top of the bolt. The :
columns from left to right
show the aspect nodes rep-
resenting the tool, the target -
object, and the interaction.

The green and red circles rep-
resent the most informative

features identified for this
visual-visual action.

4 Experiments

In this work, we show that with a small set of demonstrations, Robonaut-2 is capa-
ble of performing a ratchet task that involves grasping the ratchet, tightening a bolt,
and putting the ratchet back into a tool holder. The complete task sequence is shown
in Figure 4 and can be seen in the supplementary video. We further compare the
success rate of mating the socket to the bolt as a function of the number of demon-
strations and the size of the feature space. The experimental settings and results are
described in the following.
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Fig. 4 The ratchet task sequence performed by Robonaut-2. The images from left to right, then
top to bottom, show a sequence of actions where Robonaut-2 grasps the ratchet, tightens a bolt on
a platform, and puts the ratchet back into a tool holder.

4.1 Demonstrations

Instead of demonstrating the entire ratchet task in one session, we segment the task
into shorter sequences of sub-tasks that are easier to demonstrate. The ratchet task
is segmented into five different subtasks, a) grasping the ratchet, ) mating socket to
the bolt, ¢) tightening the bolt, d) removing the socket from the bolt, and e) putting
the ratchet back into the tool holder. For subtasks a), two demonstrations are pro-
vided. For subtask b) and e) four demonstrations are combined to create the distilled
ATG model as described in Section 3.4. For subtasks c) and d), only one demonstra-
tion is performed since the features that support these actions are unambiguous.

4.2 Evaluation

The robustness of the framework is tested on the ratchet task based on the ATGs
created from demonstrations. During execution, the aspect where the bolt is tight-
ened is first submitted as a goal aspect to the robot. The planner identifies the current
aspect node and finds a path to reach the goal aspect. Once the robot finishes tight-
ening the bolt, the aspect where the ratchet is put back to the tool holder is set as the
goal aspect. A total of 22 settings are tested. For each setting, the initial location of
the tool holder or bolt platform is altered. These initial poses are shown in Figure 5.
The number of successes for each subtask are shown in Table 1. Mating socket with
the bolt and placing the ratchet back have 86.3% and 81.8% success rate. 14 out of
24 trials succeeded the complete task.

Table 1 Number of successful trials on subtasks.

subtask on ratchet grasp  mate  tighten lift place  complete task

successful trials / total trials ~ 22/24  19/22 18/19 22/22  18/22 14/24
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=% |1

Fig. 5 Top down views of the ratchet task setting. The green objects in the left image are tested
poses and the blue objects are the demonstrated pose. The pink objects in the right image shows
poses that failed to mate the socket with the bolt and the purple objects show poses that failed to
place the ratchet back.

13 corner case settings are further tested on mating the socket with the bolt.
This set contains test cases with initial ratchet positions that are close to the sensor
and joint limit, in hand ratchet positions that are at opposite ends, and cluttered
scenarios. Our approach achieved a similar success rate of 84.6%. Figure 6 shows
some of the initial settings.

RN e s S,

e sﬁ% LA

Fig. 6 Corner case initial settings for mating the socket with the bolt. Note that in the 3rd and 4th
image the in-hand ratchet positions are different.

4.3 Comparison

To understand how the number of demonstrations and the size of the visual feature
space affect the learned action, we compare the success rates of mating the socket
to the bolt under different configurations. In this experiment, we compare the ro-
bustness of ATGs created from one to four demonstrations and with hierarchical
CNN features in the 3rd and 4th layer. Hierarchical CNN features in the 3rd layer
H? = (f7,f},f{) represents a feature with an additional filter f; and have a feature
space |f 3| = 384 times larger compared to features in the 4th layer H* = (f?, f;}),
where | £3| is the number of filters in the conv-3 layer. Our assumption is that more
complex features will require more demonstrations to learn, but may result in more
robust actions. For each trial, the robot starts with the grasped ratchet and the bolt
placed on the right side of the robot. The trial succeeds if the robot mates the socket
to the bolt. We performed 22 trials for each ATG. The results are shown in Figure 7.

Consistent with our expectations, the success rate of using H> features increases
with more demonstrations and performs better than H* features when more demon-
strations are used. The results for using H* features however fluctuates with more
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Fig. 7 Success rate versus number of demonstrations and size of feature space

than two demonstrations. We suspect that this is because H* features have a smaller
feature space and good features can be found with fewer demonstrations. The up and
down in success rate with more demonstrations may be due to imperfect demonstra-
tions and H* features that are less precise in location.

5 Conclusion

In this work, we introduced a learning from demonstration approach that learns both
actions and features. Categorizing demonstrations into three different types allows
the system to define the goal of the task by modeling the spatial relations between
features automatically. We show that through multiple demonstrations, informative
visual features and relative poses can be identified and used to model actions that
are more accurate than models of single demonstrations. This effect is clearly ob-
served in the improvement in success rate over single demonstration models when
mating the socket to the bolt. Our experiments also indicate that the larger the fea-
ture space is the more demonstrations are needed to achieve robust actions. With this
proposed approach, Robonaut-2 is capable of grasping the ratchet, tightening a bolt,
and putting the ratchet back into a tool holder with a small set of demonstrations.
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