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Abstract—The ability to operate effectively in a variety of
contexts will be a critical attribute of deployed mobile ma-
nipulators. In general, a variety of properties, such as battery
charge, workspace constraints, and the presence of dangerous
obstacles, will determine the suitability of particular control
policies. Some context changes will cause shifts in risk sensitivity,
or tendency to seek or avoid policies with high performance
variation. We describe a policy search algorithm designed to
address the problem of variable risk control. We generalize the
simple stochastic gradient descent update to the risk-sensitive
case, and show that, under certain conditions, it leads to an
unbiased estimate of the gradient of the risk-sensitive objective.
We show that the local critic structure used in the update can be
exploited to interweave offline and online search to select local
greedy policies or quickly change risk sensitivity. We evaluate
the algorithm in experiments with a dynamically stable mobile
manipulator lifting a heavy liquid-filled bottle while balancing.

I. INTRODUCTION

Many interesting manipulation tasks involve a controlled
interaction between an underactuated robot and a physical
object in the environment that has significant dynamic prop-
erties of its own. Model-based techniques, such as motion
planning [17 29], can often be used to generate solutions to
such problems, even if the model of the system and/or object
is only approximate. However, to achieve high performance
solutions that exploit subtle interactions between the dynamics
of the robot and its environment, we typically must resort
to online optimization procedures to improve on solutions
produced by motion planners. For this reason, model-free
policy search methods have become one of the standard tools
for developing controllers in robot systems [23}, 14} 264130} [12].

Mobile manipulators offer a somewhat more challenging
setting for this type of policy optimization. A fundamental
characteristic of these systems is that they must operate
effectively in a variety of (possibly rapidly changing) con-
texts: in the laboratory vs. a crowded hallway, with high vs.
low battery charge, with a nearly overheated elbow motor,
or under environmentally-imposed time constraints. In many
cases, different contexts will demand different sensitivity to-
ward variation in performance, or risk. We aim to achieve
the fine-tuned performance that policy search methods can
produce while introducing the ability to adjust the system’s
risk sensitivity based on runtime context.

We present an efficient risk-sensitive policy search algo-
rithm based on stochastic gradient descent. The algorithm
shares several properties (such as scalability, local conver-
gence, sample efficiency) with existing risk-neutral policy
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gradient algorithms that have been shown to perform well
in robot learning tasks [25) 123]. We show that the local
critic used in the gradient descent update also supports ef-
ficient offline optimization to select policies consistent with
different risk-sensitive objectives on-the-fly without relearning.
We describe results from a lifting experiment with a real
mobile manipulator that demonstrate the ability to learn a
policy that exploits dynamic interactions between the robot and
manipulated object that would be very difficult to model. We
also show how the learned policy can be adjusted at runtime
to produce policies with different spatial and energetic risk
sensitivity.

II. RELATED WORK

Early work in risk-sensitive control was aimed at finding
solutions to discrete Markov decision processes (MDPs) [8]
and linear-quadratic-Gaussian problems [9} 33]] with exponen-
tial utility functions. More recent work from Borkar relaxes
the assumption of a system model by deriving a variant of
the Q-learning algorithm for finite MDPs with exponential
utility [3]]. For continuous problems, Van den Broek et al. [32]
generalized path integral methods to risk-sensitive stochas-
tic optimal control. In our recent work [16], we extended
Bayesian optimization techniques for global model-free policy
search to the risk-sensitive case.

Other work in the discrete model-free RL setting has
focused on algorithms for learning conditional return distribu-
tions [5, 20, 21]], which can be combined with policy selection
criteria that take return variance into account. Heger [7I]
derived a worst-case Q-learning algorithm based on a minimax
criterion. Mihatsch and Neuneier [19] developed risk-sensitive
variants of TD(0) and Q-learning by allowing the learning
rate to be a function of the sign of the temporal difference
error. This algorithm was recently found to be consistent with
behavioral and neurological measurements of humans learning
a decision task that involving risky outcomes [22]. Recent
motor control experiments suggest that humans select motor
strategies in a risk-sensitive way [4].

Our contribution to this literature is an episodic risk-
sensitive policy gradient algorithm that is sample-efficient and
appropriate for domains that are continuous, noisy, and high-
dimensional. Furthermore, our proposed method supports in-
terweaving of offline optimization with online gradient descent
to select local greedy optimal policies or adaptively change
risk sensitivity.



III. PROBLEM STATEMENT

We assume the system executes a (possibly stochastic)
policy, mg, that is parameterized by a vector, 6. Executions
of mg yield a noisy signal of cost,

Jo = Jo + co, ey

where Jg is the expected cost of the policy, mg, and the
noise term, g ~ N (0,7‘3), is a function of the policy
parameters. This policy-dependent noise is critical since, in
general, the variance of the cost signal will not be constant
across the policy space. For example, in problems where
g is performing some type of stabilization (e.g., grasping,
balancing), some settings of & may only succeed for a subset
of the initial conditions, leading to high cost variance.

The optimal policy in the risk-sensitive setting is defined as

6 =
F0,k) =

arg n}gin F(0,k), where (2)
Jo + kro, 3)

and x is a parameter that controls the systems sensitivity to
risk: k = 0 is risk-neutral, k > 0 is risk-averse, and Kk < 0
is risk-seeking. For example, a subsystem at a nuclear power
plant might require x > 0 since even rare high cost events
could have significant practical impact. On the other hand, a
robot attached to a safety apparatus in the lab might set x < 0
to seek out rare low cost trials to, e.g., attempt to identify the
initial conditions that lead to such events.

IV. EP1sODIC RISK-SENSITIVE ACTOR-CRITIC

Our goal is to perform the minimization under the
implicit constraint that observations are costly to obtain.
Stochastic gradient descent methods have been shown to be
very efficient in solving episodic control tasks in the average
cost setting [28 [13, 25], so we focus on extending this
approach to the risk-sensitive case.

We consider the following risk-sensitive stochastic gradient
descent update:

n (3 5 - -
AO = 7 (Jngz — Jo + £(Totz — rg)) z, @
where 7 is a learning rate parameter, z ~ N(0,0°I) is a
perturbation to the current policy parameters, 8, and Jg and
g are estimates of the cost mean and standard deviation,
respectively. Substituting into (@) and taking the first order
Taylor expansion, we have
Ui
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where Vg fo = g—g ’0. In expectation, this update becomes
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Thus, (@) is an estimator of the gradient of expected cost that is
biased by the estimated gradient of standard deviation, where
the magnitude and direction of this bias is determined by the
risk sensitivity parameter, k.

If the estimator of the cost standard deviation is unbiased,
we have

E[AQ] = _%02%1?(0, k), ©6)
a scaled unbiased estimate of the gradient of the risk-sensitive
objective (3). Intuitively, (@) reduces to the classical stochastic
gradient descent update when either the system has a neutral
attitude toward risk (x = 0) or when the estimate of the cost
standard deviation is locally constant: Vig = 0 = 791, —
79 = 0, for small z such that the linearization holds.

From (6) it is clear that the unbiasedness of the update
is dependent on the isotropy of the sampling distribution,
z ~ N(0,0%I). However, as was shown by Roberts and
Tedrake [25], learning performance can be improved in some
cases by optimizing the sampling distribution variance inde-
pendently for each policy parameter, z ~ N(0,X). In this
case, our expected update becomes biased:

E[A0] = —%EVgF(B, k). (7)
However, this is in the direction of the natural gradient [1]].
To see this, recall that for probabilistically sampled policies,
the natural gradient is defined as Vf(0) = G71Vf(6),
where G~! is the inverse Fisher information matrix [IJ].
When the policy sampling distribution is mean-zero Gaussian
with covariance X, the inverse Fisher information matrix is
Gl=3

A. Critic Representation

The update (4) requires a local model of the cost distribution
in the neighborhood of 8. We refer to this model as a critic
because its role is similar to that played by the critic structure
in actor-critic algorithms [2, [15]. The problem of constructing
the critic in this setting can be viewed as a regression prob-
lem with input-dependent noise. There are many algorithms
suitable for solving such problems [6, 11} [31} 27, 34]. In our
experiments, we used the Variational Heteroscedastic Gaussian
Process (VHGP) model [18]], which extends the standard
Gaussian process model to capture input-dependent noise (or
heteroscedasticity) in a way that maintains tractability of the
mean and variance of the predictive distribution. In general,
the hyperparameters of the model are not known exactly,
so model selection is performed efficiently by maximizing
a tractable lower bound on the marginal log-likelihood. For
details regarding the VHGP model, we direct the reader to the
original paper [18].

The critic is updated after each policy evaluation by re-
computing the predictive cost distribution using previous ob-
servations near the current parameterization, 8. The nearest
neighbor selection can be performed efficiently by storing
observations in a KD-tree data structure and using, e.g., a k-
nearest neighbors or an e-ball criterion.



The episodic risk-sensitive actor-critic algorithm (ERSAC)
is outlined in Algorithm [1}

Algorithm 1 Episodic risk-sensitive actor-critic
1) Input: n,x,0,M,€,0, X,y
a) fori:=1: M
i) Sample perturbation: z ~ N (0,0°T)
ii) Execute 0 + z, record cost Jg,
iii) Update data: .
X,y =[X;6+2],[y; Joiz)
Xiocs Yioe = NearestNeighbors(X,y,0,¢€)
iv) Compute posterior mean and variance:
Jo = E[Jo | Xioc; Yioc
7:3 - V[JG lxloca yloc]
{Fngz = V[JB—‘rZ | Xlocayloc]
v) Update policy parameters:
AG := 7% (j9+z — ja + K(f9+z — fg)) Z
0:=60+ A0
b) Return X,y, 0

The local VHGP critic can also be used to perform efficient
offline optimization of F(@,x) = Jg + ke using standard
nonlinear optimization algorithms, such as sequential quadratic
programming (SQP). This is particularly useful when « is
varied online to adjust risk based on the current operating
context. In our experiments in Section[V] we show that this op-
timization can be used to make runtime changes to the policy
parameters that lead to significant performance improvements
under changing optimization criteria. The local offline policy
optimization procedure is illustrated in Algorithm

Algorithm 2 Offline local policy optimization

1) Input: x,¢,0, X,y
a) Compute local neighborhood:
Xiocs Yioc = NearestNeighbors(X,y,0,¢€)
b) Optimize 0 locally using, e.g., SOP:
Return arg ming F'(6, k)

B. Example

Figure [I] illustrates example runs of the above algorithms
using the synthetic cost distribution in Figure Figure [1(b)
shows the result of applying the ERSAC algorithm with a
risk-averse objective, k = 2. The algorithm descends the
gradient of the upper confidence bound to a local minimum
while maintaining a reasonable local approximation of the cost
distribution.

Figure shows the result of applying offline local policy
optimization using the local estimate of the cost distribution
obtained during gradient descent. By performing an offline
optimization using a risk-neutral objective, the algorithm di-
rectly selects a near-optimal average cost policy. Changing the
value of the risk parameter in the offline optimization objective
leads to selection of local risk-averse (x = 2) and risk-seeking
(k = —2) objectives.

V. EXPERIMENTS

We performed experiments with the uBot-5, a dynamically
balancing mobile manipulator designed at the University of
Massachusetts Ambherst. The task we considered was lifting a
1 kg, partially-filled laundry detergent bottle from the ground
to a height of about 120 cm (the robot’s shoulder height above
the ground is 60 cm).

This problem is challenging for several reasons. First, the
bottle is heavy, so most arm trajectories from the starting
configuration to the goal will not succeed because of the
limited torque generating capabilities of the arm motors.
Second, the robot balances using a simple linear-quadratic
regulator (LQR) that models the upper body as a fixed mass.
Thus, upper body motions act as disturbances to the stabilized
system and violent lifting trajectories will cause the robot to
fall. Finally, the bottle itself has significant dynamics since
the heavy liquid sloshes as the bottle moves. Since the robot
has only a simple claw gripper and we made no modifications
to the bottle, the bottle moves freely in the hand, which we
observed to have a significant effect on the stabilized system.
These features make this problem well suited to a model-free
policy search approach.

The policy was represented as a cubic spline trajectory in
arm joint space with 7 open parameters that were learned by
the algorithm. The parameters included 4 shoulder and elbow
waypoint positions and 3 time parameters. Joint velocities
at the waypoints were computed using the tangent method.
The initial policy was a smooth and short duration motion
to the goal configuration, such as a simple motion planner
without detailed knowledge of the bottle might have produced.
However, this policy succeeded only a small fraction of the
time, with most trials resulting in a failure to lift the bottle
above the shoulder.

The cost function was defined as

J = / ! (xTQx + cI(t)V (1)) dt (8)

0

where x = [xwh,eeh i‘wheela Qbpody dbodgp herror]—r, I(t)V(t)
is the power being consumed by all motors at time ¢, Q =
diag([0.001,0.001,0.5,0.5,0.05]), and ¢ = 0.01. The compo-
nents of the state vector are the wheel position and velocity,
body angle and angular velocity, and vertical error between the
desired and actual bottle position, respectively. Intuitively, a
cost function of this form encourages fast and energy efficient
solutions that do not violently perturb the LQR. In each trial,
the servo rate was 100 Hz and 7' = 6 s. A trial ended when
either ¢ > T or the robot reached the goal configuration
with maintained low wheel velocity. The parameter values
in all experiments were n = 0.5,0 = 0.075,¢ = 3.50, and
n/7e € [0.01,0.5].

A. Risk-Neutral Learning

In the first experiment, we ran ERSAC with x = 0.
The VHGP model was used to locally construct the critic
and model selection was performed using the NLOPT [10]
implementation of SQP. A total of 30 trials (less than 2.5
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(c) Different risk-sensitive policies can are selected offline using the local distribution learned during risk-neutral gradient descent.

Fig. 1. Figure[(b)]illustrates how risk-averse stochastic gradient descent descends the upper confidence bound of a synthetic cost distribution, [(a)] Subfigure [(c)]
shows the result of performing offline local optimization using different risk-sensitive objectives given the local distribution learned during risk-neutral gradient

descent.

minutes of robot time) were performed and a reliable, low-
cost policy was learned. Figure [2] illustrates the reduction in
cost via empirical measurements taken at discrete times during
learning. Interestingly, the learned policy exploits the dynamics
of the liquid in the bottle by timing the motion such that the
shifting bottle contents coordinate with the LQR controller
to correct the angular displacement of the body. Figure [3(a)]
shows an example run of the learned policy.

B. Variable Risk Control

Given that we can learn a high performance policy in
a small number of trials, we next examined the extent to
which the policy could be adjusted on-the-fly to maintain high
performance in different operating contexts. Our experiments

were aimed at generating translation risk-averse and energy
risk-averse policies. Intuitively, these cases might correspond
to when the robot’s workspace is small, requiring that the
policy that has a small footprint with high certainty, and when
the battery charge is very low, requiring that the policy uses
very little energy with high certainty.

We represented a change in context by a reweighting
of cost function terms. To capture the low battery charge
context, we increased the relative weight of the motor power
term in (B): Q = diag([0.0005,0.0005,0.25,0.25,0.05]) and
c 0.1. We then recomputed the cost of previous tra-
jectories under this transformed cost function, je"(O), and
used SQP to minimize F,(@,2). Likewise, to represent the
translation risk-averse case we increased the relative weight



(b) Translation risk-averse policy

Fig. 3. After 30 episodes of policy search, a risk-neutral policy @ is learned that exploits the dynamics of the container to reliably perform the lifting task.
With no additional learning trials, a risk-averse policy [(b)] is selected offline that reliably reduces translation. The total time duration of the above sequences

is about 3 seconds.
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Fig. 2. Data collected from 10 test trials executing the initial lifting policy,
the policy after 15 episodes of risk-neutral learning, and the final policy after
30 episodes of learning.

assigned to wheel translation in the cost function (Q =
diag([0.002,0.001,0.5,0.5,0.05]) and ¢ = 0.001) and min-
imized F3,(6,2) offline.

The result of applying offline policy selection for transla-
tion risk-aversion is shown in Figure ] With no additional
trials, the system selected a policy that significantly reduced
cumulative translation. An example run of the selected policy

is shown in Figure [3(b)] Using the translation averse policy
as a starting point, we performed an additional 5 episodes of
risk-averse gradient descent. The result of this short learning
process was a very low average cost, low variance policy (see
Figure [).

We repeated this experiment for the energy risk-aversion
case and the result was very similar: the offline selected policy
significantly increased performance with respect to the energy
risk-averse criterion and 5 additional episodes of risk-averse
online learning further increased performance leading to a very
good policy (see Figure ).

VI. DISCUSSION

We presented a policy search algorithm that efficiently
descends the (natural) gradient of a risk-sensitive objective.
Although we focused on a particular manipulation task in
our experiments, the ERSAC algorithm has much broader
applicability to problems involving complex nonlinear dynam-
ics, high-dimensionality, and policy dependent noise that may
be large relative to the total magnitude of the cost. Since
the algorithm performs local exploration, the quality of the
final solution will depend on the initial policy. It is therefore
good practice to combine such algorithms with methods for
generating approximate initial solutions (e.g., sampling-based
motion planning) when possible.

Although the performance of the algorithm is not dependent
on the state dimensionality, it is dependent on the dimension-
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Fig. 4. Data collected from test runs of the previously learned policy,
the offline selected translation risk-averse policy, and the policy after 5
episodes of risk-averse gradient descent. The solid magenta line corresponds
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with the previous column (Behrens-Fisher, p < 0.01) and a triangle signifies
a statistically significant reduction in the sample variance (Chi-squared,
p < 0.01).
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Most algorithms that could be used to capture the local cost
distribution require that assumptions be made regarding the
smoothness of the expected cost and cost variance functions.
Thus, care should be taken when selecting a critic structure
so that, e.g., non-stationarity in the cost distribution is not
overlooked.

VII. CONCLUSION

Mobile systems designed meet manipulation and mobility
objectives in many contexts must be adaptive—exploiting prior
experience to make rapid adjustments to learned policies. In
particular, some situations will require a non-neutral attitude
toward risk. We examined this problem in the general context
of model-free policy search. Our results demonstrate the
potential for efficient online learning of a dynamically complex
task and runtime adjustment of risk sensitivity in response to
context changes.
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