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ABSTRACT

VARIABLE RISK POLICY SEARCH FOR
DYNAMIC ROBOT CONTROL

SEPTEMBER 2012

SCOTT ROBERT KUINDERSMA

B.Sc., BRYANT UNIVERSITY

M.Sc., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Roderic A. Grupen and Professor Andrew G. Barto

A central goal of the robotics community is to develop general optimization

algorithms for producing high-performance dynamic behaviors in robot systems. This

goal is challenging because many robot control tasks are characterized by significant

stochasticity, high-dimensionality, expensive evaluations, and unknown or unreliable

system models. Despite these challenges, a range of algorithms exists for performing

efficient optimization of parameterized control policies with respect to average cost

criteria. However, other statistics of the cost may also be important. In particular,

for many stochastic control problems, it can be advantageous to select policies based

not only on their average cost, but also their variance (or risk).

In this thesis, I present new efficient global and local risk-sensitive stochastic

optimization algorithms suitable for performing policy search in a wide variety of

problems of interest to robotics researchers. These algorithms exploit new techniques
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in nonparameteric heteroscedastic regression to directly model the policy-dependent

distribution of cost. For local search, learned cost models can be used as critics for

performing risk-sensitive gradient descent. Alternatively, decision-theoretic criteria

can be applied to globally select policies to balance exploration and exploitation in

a principled way, or to perform greedy minimization with respect to various risk-

sensitive criteria. This separation of learning and policy selection permits variable

risk control, where risk sensitivity can be flexibly adjusted and appropriate policies

can be selected at runtime without requiring additional policy executions.

To evaluate these algorithms and highlight the importance of risk in dynamic

control tasks, I describe several experiments with the UMass uBot-5 that include

learning dynamic arm motions to stabilize after large impacts, lifting heavy objects

while balancing, and developing safe fall bracing behaviors. The results of these

experiments suggest that the ability to select policies based on risk-sensitive criteria

can lead to greater flexibility in dynamic behavior generation.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Remarkable and beautiful feats of dynamic control, beyond our current ability

to reproduce in robot systems, are ubiquitous in the animal kingdom. For example,

consider Coquerel’s sifaka, a species of lemur native to the dry deciduous forests of

north-western Madagascar. The bodies of these animals are exquisitely specialized

to the type of upright arboreal locomotion common to most lemur species. However,

partially as a result of this adaptation, members of this species exhibit a remarkable

terrestrial locomotion strategy of leaning forward and leaping several meters on their

hind legs while using arm motions in flight to regulate the angular momentum of their

bodies.

It is clear from such examples that behaviors are often constrained by, if not

guided by, the physical properties of the embodied system. Sifakas need not cross flat

terrain in such a spectacular fashion, but they do so because it is an efficient and

reliable method given their bodies and predisposition to leaping behaviors. Likewise,

the development of high-performance control policies in robot systems will depend

strongly on the kinematic and dynamic properties of the system and the availability

of instructive initial policies or suitably constrained behavior spaces. In nature, ap-

proximate or partial solutions to control problems are often natively present in infant

members of a species. For example, several researchers have reported instances of

wildebeest calves struggling to their feet, walking, and running with their herd less

than 5 minutes after birth [118]. Native controllers are often improved or replaced
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over time with more specialized behaviors that exploit innate dynamics in subtle ways

that might be difficult to capture in even a very good system model. It may even be

the case that many of these behaviors are discovered without explicit knowledge of

the complicated nonlinear dynamics involved.

Sensitivity to risk (i.e., variation in performance) is another aspect of animal

control that could be pervasive. One reason why this is hard to know for sure is

that it is typically very difficult in practice to precisely identify the optimization

being performed to produce a behavior (if optimization is, in fact, the correct way

to describe such processes). However, there are some instances where the reward

or cost associated with particular behaviors is externally measurable. For example,

foraging strategies of a variety species have been extensively studied by behavioral

ecologists [43, 10]. These studies have repeatedly shown that animals are sensitive

to the variance of alternative food sources, where their propensity to be risk-seeking

(i.e., preferring higher variance) or risk-averse depends on several factors such as en-

ergy reserves and number of available food sources. Other recent work in human

motor control and learning has used explicit numerical signals as measures of perfor-

mance [20, 86]. The results of these experiments suggest that humans may also be

sensitive to risk when learning or solving simple control tasks.

The extent to which risk sensitivity plays a part in the optimization of low-level

dynamic behaviors in nature is not currently known. However, for many robot sys-

tems, it is clear that risk is an important consideration. For example, imagine a

humanoid robot that is capable of several dynamic walking gaits that differ based

on their efficiency, speed, and predictability. When operating near a large crater, it

might be reasonable to select a more predictable, possibly less energy-efficient gait

over a less predictable, higher performance gait. Likewise, when far from a power

source with low battery charge, it may be necessary to risk a fast and less predictable

policy because alternative gaits have comparatively low probability of achieving the
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required speed and efficiency. To create flexible systems of this kind, it will be neces-

sary to design optimization processes that produce control policies that differ based

on their risk. However, the majority of existing optimization algorithms suitable for

solving control tasks in robot systems are designed to be risk-neutral, focusing on

average performance and ignoring performance variation.

In this thesis, I consider the problem of learning dynamic behaviors in robot

systems using methods that flexibly take risk-sensitivity into account. In particular,

I consider the problem of efficiently optimizing parameterized policies, where both

the expected cost and cost variance depend on the policy. I present new global and

local stochastic optimization algorithms and examine their applicability for solving

risk-sensitive policy search problems. By directly modeling the distribution of cost in

policy parameter space, these algorithms support variable risk policy selection, where

risk sensitivity can be flexibly specified and appropriate policies can be selected at

runtime without requiring additional policy executions. To evaluate these algorithms

and highlight the importance of risk in dynamic control tasks, I describe several

experiments with the UMass uBot-5 that include learning dynamic arm motions to

stabilize after large impacts, lifting heavy objects while balancing, and developing

a safe fall bracing behavior. These experiments suggest that the ability to select

policies based on risk-sensitive criteria leads to greater flexibility in dynamic behavior

generation.

1.2 Summary of Contributions and Document Outline

The chapters in this work are organized as follows:

• Chapter 2: Background and Related Work. This chapter provides the

necessary background to understand the contributions of this thesis. In par-

ticular, it includes a concise overview of the optimal control and risk-sensitive

optimal control frameworks, and an overview of related work in reinforcement
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learning on model-free policy search methods. I also provide a detailed intro-

duction to Bayesian optimization algorithms and discuss their application to

policy search.

• Chapter 3: Learning Rapid Stabilizing Arm Motions via Global Pol-

icy Search. This chapter describes experiments on learning arm motion poli-

cies for impact recovery with the uBot-5. Parameterized open-loop arm motions

were efficiently optimized using Bayesian optimization and a cost function in-

spired by general observations of arm motion effects on recovery from the biome-

chanics literature. The learned arm motions, combined with a fixed closed-loop

lower body response, significantly increased spatial efficiency, robustness, and

energy efficiency. An unexpected result from these experiments was that differ-

ent arm recovery policies have different sensitivity to initial conditions and hence

significantly different cost variance. This policy-dependent variance motivates

the development of the algorithm introduced in Chapter 4.

• Chapter 4: Global Variable Risk Policy Search. This chapter introduces

a new algorithm, called Variational Bayesian Optimization (VBO), that extends

the standard Bayesian optimization algorithm to the case where cost variance is

policy dependent, a property present in many robot control tasks (including the

task described in Chapter 3). The VBO algorithm is an extension of standard

Bayesian optimization, where the Gaussian process model is replaced with the

Variational Heteroscedastic Gaussian Process model [65]. I derive expressions

for the expected improvement of a policy under the intractable variational dis-

tribution and show that confidence bound policy selection criteria, that have

previously been studied in the context of Bayesian optimization, have a direct

connection to risk-sensitive optimal control. Finally, I propose a generalized
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selection criterion called expected risk improvement that balances exploration

and exploitation in the risk-sensitive optimization setting.

Experimental results are presented from a simple artificial domain and from

large-impact balance recovery experiments with the uBot-5.

• Chapter 5: Local Variable Risk Policy Search. This chapter proposes a

local variable risk policy search algorithm based on stochastic gradient descent.

Global policy search methods, such as Bayesian optimization, lack general con-

vergence guarantees and can produce large policy changes between episodes,

which may be undesirable for some systems. The Risk-Sensitive Stochastic

Gradient Descent (RSSGD) algorithm addresses this shortcoming by using the

learned distribution of cost as a local critic for performing gradient descent.

Under certain assumptions, the algorithm descends the gradient of the risk-

sensitive objective and the minimum variance update equation can be viewed

as locally moving in the direction of risk improvement as defined in Chapter 4.

Experimental results from a dynamic heavy lifting task are presented. The

robot efficiently learned a policy for lifting a laundry detergent container that

exploited the motion of the liquid in the bottle to cancel out the forward motion

produced by the fixed closed-loop balancing controller. These results include a

demonstration that, with little or no additional trials, the robot can adjust its

lifting policy in a completely model-free way to become translation-averse or

energy-averse.

• Chapter 6: Postural Control and Recovery with the uBot-5. This

chapter discusses the long-term objective of developing a complete postural

stability control system for the uBot-5. The controllers developed in this thesis,

combined with postural stability controllers developed in our prior work, have

contributed to this goal and have greatly improved the deployability of the robot
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in unstructured human environments. Results are described from experiments

applying risk-sensitive optimization to produce a safe fall bracing behavior and

the role of risk-sensitivity in choosing between recovery and bracing behaviors

based on inferred impact magnitude is examined.

• Chapter 7: Conclusions and Future Work. This chapter summarizes the

work presented in this thesis and outlines promising directions for future work.
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CHAPTER 2

BACKGROUND AND RELATED WORK

This chapter provides a brief overview of optimal control and the variety of algo-

rithms used to find optimal and locally optimal control policies. Particular emphasis

is placed on related work on model-free policy search methods to give context to

the contributions of this thesis. The possibility of solving optimal control problems

using pure stochastic optimization techniques is also discussed, including a more de-

tailed introduction to Bayesian optimization for policy search. Finally, the chapter

concludes with a brief overview of risk-sensitive optimal control and a summary of

related work in that field.

2.1 Optimal Control

Optimal control theory is a general mathematical framework for deriving control

policies that minimize a cost function, possibly subject to several constraints [110, 14].

It has been described as the “computational framework of choice for studying the

neural control of movement” [127] and has seen widespread application throughout

the robotics community. Furthermore, many algorithms exist in the literature for

efficiently finding policies for a wide variety of problems with different stochasticity,

nonlinearity, continuity, and dimensionality properties. For these reasons, optimal

control is a very attractive framework in which to study problems of dynamic control

in robot systems.

Before stating the optimal control problem, a few concepts must be introduced.

The first is the notion of a state space, X . The system to be controlled is said to be in
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the state x(t) ∈ X at time t. Typically, x(t) is defined to be a real vector containing

the positions and velocities of all degrees of freedom (DOF) in the system, hence

X ⊆ R2n, where n is the number of DOF. For example, a typical robot arm might have

n = 7 rotational joints. In practice, it is possible to include other potentially useful

measurements in the state vector corresponding to, e.g., motor voltages, locations of

visual features, etc.

The actions taken by the system are represented by a control vector, u(t) ∈ U ⊆

Rk. Typically, u(t) is a vector of torque references for a subset of the DOF. Taking

an action, u(t), in state x(t) produces a change in the state of the system that is

captured by a dynamic equation or model,

ẋ(t) = f(x(t),u(t)), (2.1)

where the function f(x(t),u(t)) is, in general, nonlinear. Finally, to evaluate the

system performance, we define a cost function of the form

J(x(0)) = h(x(T )) +

∫ T

0

`(x(t),u(t), t)dt, (2.2)

where the term h(x(T )) is the final cost for being in state x(T ) at time T , `(x(t),u(t), t)

is the instantaneous cost of taking action u(t) in state x(t) at time t, and x(0) is the

starting state or initial conditions. Cost functions of the form (2.2) are known as a

finite-horizon cost functions because of the fixed evaluation time, T . Infinite-horizon

cost functions are also possible and are commonly used to describe regulation tasks

where, e.g., the system attempts to maintain a particular state indefinitely.

The system generates actions according to a controller, or policy, that is a function

of state and time, u(t) = π(x(t), t). Thus, the optimal control problem is to find an

optimal policy,
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π? = arg min
π

[
h(x(T )) +

∫ T

0

`(x(t), π(x(t), t), t)dt

]
, (2.3)

subject to

ẋ(t) = f(x(t),u(t)),

x(0) = x0,

where the last equation defines the fixed starting state. In other words, an optimal

control algorithm must find the policy that minimizes cost subject to the system

dynamics and initial conditions. In practice, many robot control tasks have the

property that the cost incurred by executing a particular policy is not fixed. This

commonly arises due to stochasticity in the dynamics,

ẋ(t) = f(x(t),u(t),w(t)), (2.4)

where w(t) is an uncontrolled disturbance input to the system that is drawn from some

noise process. In this case, we can consider the cost to be a random variable drawn

from a probability distribution that depends on the policy and initial conditions,

Ĵ(π) ∼ P (J |π,x0). To define the optimization problem, one must then specify a

minimization objective that is a functional of the cost distribution. A straightforward

and widely used criterion is the average or expected cost, E[Ĵ(π)]. However, as will

be discussed in Section 2.4, more general criteria are also possible.

Analytical approaches to solving optimal control problems are primarily based on

a result called the Hamilton-Jacobi-Bellman (HJB) equation, which gives a sufficient

but not a necessary condition for optimality. This result exploits the recursive struc-

ture of the optimal cost-to-go function, J?(x(t), t), that was famously described by

Bellman [12] in his principle of optimality,
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J?(x(T ), T ) = h(x(T )),

J?(x(t), t) = lim
dt→0

min
u

[`(x(t),u, t)dt+ J?(x(t+ dt), t+ dt)] . (2.5)

Intuitively, these equations capture the obvious fact that the cost of an optimal policy

starting in state x(t) at time t is equal to the the instantaneous cost of the best possible

action plus the cost of following an optimal policy thereafter. Equation (2.5) can be

approximated by a first-order Taylor expansion to yield the HJB equation [120],

0 = min
u

[
`(x(t),u, t) +

∂J?

∂x
f(x(t),u) +

∂J?

∂t

]
∀x ∈ X , t ∈ [0, T ]. (2.6)

The above expression is for the deterministic case, however the HJB equation can

also be derived for stochastic systems with expected cost criteria [127]. The reason

that this equation is not also a necessary condition for optimality is the requirement

that ∂J?

∂x
exist for all states, which is not true for even some very simple problems.

One way to avoid this difficulty is to instead attempt to solve (2.6) locally along

a single trajectory [14]. Leaving the details aside, the result, known as Pontryagin’s

minimum principle [94], provides a necessary but not a sufficient condition for op-

timality in deterministic systems. The important practical implication of this result

is that the gradient ∂J?

∂x
need only be calculated along a single trajectory, rather

than over the entire state space, making it applicable to problems with discontinuous

optimal cost-to-go functions. However, as a penalty for this convenience, it only guar-

antees local optimality, whereas solutions to the global HJB equation are guaranteed

to be optimal (if they exist).

Unfortunately, direct derivations of optimal policies using these analytical insights

are only possible in very simple problems, e.g., those involving systems with linear

dynamics. However, these results have laid the foundation for a wide variety of nu-

merical and sample-based algorithms that have much broader ranges of applicability.

These algorithms can be similarly distinguished based on whether they attempt to
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find global or local solutions to control problems. For example, the discrete-time

formulation of (2.5), called the Bellman equation, serves as the basis for dynamic

programming (DP) algorithms [12, 14]. DP algorithms work by iteratively improving

an estimate of the cost-to-go, or value function, by repeatedly updating the value of

each state using the immediate cost and the current estimate of the remaining cost-

to-go. If an optimal value function is found, the optimal policy can be derived via

the principle of optimality with a one-step lookahead search over actions. This search

becomes costly as the number of actions grows, and in the limiting case of continuous

actions, one must settle for approximate solutions found by performing line search or

resort to specialized techniques for representing the cost-to-go function [8]. For finite

state and action spaces, DP algorithms are guaranteed to converge to the optimal

value function in a finite number of iterations. However, when the number of states

and actions is large, the time required for DP to converge can be prohibitively long,

a well-known problem referred to as the curse of dimensionality [12].

Work in reinforcement learning (RL) [115, 15] has focused on developing a va-

riety of sample-based algorithms for solving discrete-time stochastic optimal control

problems called Markov decision processes (MDPs). Central to this field are several

efficient algorithms based on temporal-difference (TD) methods [114, 132, 104, 19].

TD methods can be viewed as a middle ground between DP and Monte Carlo meth-

ods that update predictions of the cost-to-go using samples from trajectories obtained

from policy executions. Unlike DP methods, many of these algorithms do not require

knowledge of the system dynamics (i.e., the are model-free). However, as is the case

with DP methods, these algorithms do not scale well to high-dimensional state and ac-

tion spaces, so successful applications to robot control tasks can require considerable

ingenuity. Fortunately, recent advances in basis function methods for approximating

value functions in continuous spaces have begun to narrow this gap [70, 39, 49, 55].

11



Rather than attempting to compute optimal cost-to-go functions from which op-

timal policies can be derived, local policy search algorithms consider parameterized

policies, u(t) = πθ(x(t), t), and attempt to minimize cost by directly searching in the

space of policy parameters. Here, the parameter vector, θ, might contain the gains of

a linear feedback policy, πθ(x(t), t) = diag(θ) · x(t), or waypoint positions and times

used to generate an open-loop trajectory. In the optimal control literature, several

model-based algorithms have been developed that employ nonlinear programming to

perform trajectory optimization [17]. In particular, for deterministic systems with

fixed initial conditions, general second-order nonlinear optimization methods can be

applied since the gradients of the cost with respect to the policy parameters can be

efficiently computed via techniques such as backpropagation through time [133].

A variety of efficient model-free policy search algorithms have been developed by

the RL community. Many of these algorithms attempt to estimate and descend the

gradient of the expected cost by exploiting the underlying Markov structure of the

discrete-time dynamics. This class of algorithms is particularly relevant for robot

applications due to their ability to cope with the properties commonly present in

these types of control problems, such as stochasticity and high-dimensional contin-

uous state and action spaces. The model-free attribute is also attractive because

the form of the dynamic equation for real robot systems is often only approximately

known, so relying on knowledge of the dynamics to derive solutions can lead to poor

performance. In fact, by virtue of ignoring the model, the algorithms are insensitive

to the complexity of the dynamics [100], allowing them to potentially produce behav-

iors that exploit subtle dynamic properties of the physical system that would be very

difficult to capture in a model.

The contributions of this thesis lie within the general class of model-free policy

search algorithms. Thus, to provide sufficient context for the work that follows, an

overview of these methods is given in the next section.
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2.2 Model-Free Policy Search

As was previously described, the approach taken by policy search algorithms is

direct. First, a parametric representation of the policy is defined, u(t) = πθ(x(t), t),

then the policy parameters, θ, are incrementally adjusted to minimize expected cost.

In the RL literature, policy search algorithms often attempt to estimate the gradient

of the expected cost, ∂E[Ĵ(θ)]
∂θ

, using sample trajectories and subsequently make small

changes to the policy parameters,

θk+1 = θk − ηk
E[Ĵ(θ)]

∂θ
, (2.7)

where ηk is a step size parameter that is typically set to be a constant or decreasing

function of the update iteration, k.

The simplest type of policy gradient methods are finite difference methods, which

attempt to estimate the gradient by 1) generating perturbations to the policy param-

eters, 2) executing the resulting policies to generate unbiased samples of the expected

return, and 3) using these data to produce a gradient estimate by, e.g., performing a

least squares fit. These methods have the advantage of typically being very easy to

implement because the update rules are simple and the algorithm parameters can, in

some cases, be easily tuned. Not surprisingly, these approaches have been success-

fully applied to several robot control tasks [103, 47, 121, 79, 99]. However, in practice

these approaches can have high update variance, which is to say that for systems with

significant stochasticity and many policy parameters, the number of samples required

to obtain a reliable gradient estimate can be large. Roberts and Tedrake [100] provide

an insightful analysis of this general class of algorithms that shows how performance

is related to policy parameter dimensionality, noise magnitude, and the perturbation

distribution.

Another well-studied class of algorithms are likelihood ratio methods, such as RE-

INFORCE [136] and the related GPOMDP algorithm [11], that exploit a mathemat-
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ical trick to compute the gradient of the expected cost-to-go using only derivatives of

the policy with respect to its parameters. Rather than perturbing policy parameters

directly, these methods rely on a probabilistic policy representation where actions are

drawn from a distribution conditioned on the policy parameters,

u(t) ∼ πθ(u|x(t),θ, t). (2.8)

These algorithms have faster converge rates than finite difference methods, however

for deterministic policies, a system model is required [90].

Actor-critic algorithms [9, 51] are designed to combine the sample-efficiency of

TD methods with the advantages of policy gradient methods (i.e., local convergence

guarantees and the ability to cope with continuous action spaces). By learning an ap-

proximate cost-to-go function and using it to make incremental changes to the policy

parameters, lower update variance can be achieved. In addition, local convergence

guarantees exist as long as the policy parameter updates are gradient based and meet

the conditions described by Bertsekas and Tsitsiklis [16]. Sutton et al. [116] proved

that by representing the expected cost-to-go with a compatible function approxima-

tor, the true policy gradient could be calculated and, under certain assumptions,

convergence to a locally optimal policy is guaranteed.

More recently, building on the work of Amari [3] and Kakade [44], Peters and

Schaal developed the natural actor-critic (NAC) algorithm [91]. The major insight

that inspired this work was that the policy parameter space has Riemannian structure,

i.e., it forms a manifold. Thus, the Euclidean distance metric implied by the standard

gradient update (2.7) is not generally correct, and performance therefore depends on

the policy parameterization. To remedy this, it is suggested that the parameters be

updated in the direction of the natural gradient,

θk+1 = θk − ηkG−1
θ

∂E[Ĵ(θ)]

∂θ
, (2.9)
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where Gθ is the Riemannian metric tensor that captures the intrinsic curvature of

the parameter space manifold. For stochastic policies, the policy parameters specify

a probability distribution and it can be shown that Gθ = Fθ is the Fisher information

matrix [44, 7, 91]. This led to the critical insight that the natural gradient update (2.9)

can be simplified further in the RL setting by observing that ∂E[Ĵ(θ)]
∂θ

= Fθw where

w are the learned value function parameters using a compatible function approxima-

tor [116]. Thus, (2.9) becomes,

θk+1 = θk − ηkw. (2.10)

This surprisingly simple update rule forms the basis for NAC algorithms which are

widely regarded as the state of the art in policy gradient methods.

Another approach to policy gradient is to use sample trajectories to learn a dy-

namic model using techniques from regression, and then use the learned model to

analytically compute the policy gradient. Naive implementations of this approach

are unlikely to succeed because of the bias of the model estimator. However, a bet-

ter approach is taken by the PILCO [28] algorithm where a probabilistic dynamics

model is constructed using Gaussian process regression (Section 2.3.1), which explic-

itly takes model uncertainty into account. Although this approach is computationally

intensive, remarkably sample-efficient learning has been reported in simple nonlinear

control tasks.

Cost-weighted averaging approaches, such as cross entropy [71], PoWER [46],

PI2 [123], and the recent PI2-CMA [113], have become popular for solving policy

search problems in robotics with fixed initial states. Rather than performing gradi-

ent estimation, these methods use Monte Carlo cost samples from randomly perturbed

policies to perform a weighted average to compute new parameters. Theodorou et

al. [123] showed how such an algorithm can be derived from first principles of stochas-
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tic optimal control. Their experiments with PI2 demonstrated an order-of-magnitude

performance increase over episodic natural actor-critic.

Finally, it is also possible to use pure stochastic optimization approaches, such as

response surface methods [41], to perform policy search. In this case, Monte Carlo

costs are used to fit a model of the cost as a function of the policy parameters. This

model is then used to perform offline optimization to select the next policy parameter

setting. These approaches tend to be very sample-efficient, but their performance

degrades as the dimensionality of the policy parameterization grows. Another distin-

guishing characteristic is that they perform global policy search, however convergence

to a global optimum can only be guaranteed in certain cases [22]. A detailed descrip-

tion of one such approach, called Bayesian optimization [21], is given in the next

section.

Policy search methods are considered to be the most appropriate RL algorithms

for many robotics applications because they provide a natural way for a designer

to incorporate prior knowledge in the form of a parameterized policy while main-

taining theoretically attractive properties in continuous, stochastic state and action

spaces [92]. Indeed, numerous applications of policy search methods to robot control

tasks exist in the literature [32, 13, 102, 47, 121, 90, 46, 99, 123, 50]. However, suc-

cessful application of these algorithms still requires several important experimenter

decisions. In particular, it is often desirable to find a task-appropriate policy repre-

sentation that is both expressive and low-dimensional. Another challenge is finding

suitable values for the algorithm parameters and initial policy parameters. For the

former, data can be collected from the robot to help perform parameter fits. Alterna-

tively, a task simulator could be constructed in some cases to perform a more complete

parameter search. In general, algorithms with fewer parameters are preferred. Find-

ing good initial policy parameters is particularly important for local methods such

as policy gradient. It is common to harness expert operator knowledge or learn from
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human demonstration [5]. However, good initial policies are somewhat less important

for global policy search methods such Bayesian optimization, which is described in

the next section.

2.3 Bayesian Optimization

Bayesian optimization algorithms are a family of global optimization techniques

that are well suited to problems where noisy samples of an objective function are

expensive to obtain [67, 29, 21, 73, 137, 122]. In describing these algorithms, I use

the language of policy search where the inputs are policy parameters and outputs

are costs. However, these algorithms are applicable to general stochastic nonlinear

optimization problems not related to control.

In contrast to the policy gradient methods highlighted in the previous section,

Bayesian optimization algorithms perform policy search by modeling the distribution

of cost in policy parameter space and applying a policy selection criterion to this dis-

tribution to globally select the next policy parameters. Selection criteria are typically

designed to balance exploration and exploitation with the intention of minimizing the

total number of policy evaluations. These properties make Bayesian optimization at-

tractive for robotics since cost functions often have multiple local minima and policy

evaluations are typically expensive. Other attractive features of Bayesian optimiza-

tion algorithms include the ability to incorporate approximate prior knowledge about

the distribution of cost (such as could be obtained from simulation) and enforce hard

constraints on the policy parameters.

2.3.1 Gaussian Processes

Most Bayesian optimization implementations represent the prior over cost func-

tions as a Gaussian process (GP). A GP is defined as a (possibly infinite) set of

random variables, any finite subset of which is jointly Gaussian distributed [97]. It
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is useful to think about Gaussian processes as a prior distribution over continuous

functions of the input variables. The GP prior, J(θ) ∼ GP(m(θ), kf (θ,θ
′)), is fully

specified by its mean function and covariance (or kernel) function,

m(θ) = E[J(θ)],

kf (θ,θ
′) = E[(J(θ)−m(θ′))(J(θ)−m(θ′))].

Typically, we set m(θ) = 0 and let kf (θ,θ
′) take on one of several standard forms.

A common choice is the anisotropic squared exponential kernel,

kf (θ,θ
′) = σ2

f exp(−1

2
(θ − θ′)>M(θ − θ′)), (2.11)

where σ2
f is the signal variance and M = diag(`−2

f ) is a diagonal matrix of length-

scale hyperparameters. Intuitively, the signal variance hyperparameter captures the

overall magnitude of the cost function variation and the length-scales capture the

sensitivity of the cost with respect to changes in each policy parameter. The squared

exponential kernel is stationary since it is a function of θ − θ′, i.e., it is invariant

to translations in parameter space. In some applications, the target function will be

non-stationary: flat in some regions, with large changes in others. There are kernel

functions appropriate for this case [97], but the work described in this thesis uses the

squared exponential kernel exclusively.

Samples of the latent cost function are typically assumed to have additive inde-

pendent and identically-distributed (i.i.d.) noise,

Ĵ(θ) = J(θ) + ε, ε ∼ N (0, σ2
n). (2.12)

Given the GP prior and data,

Θ = [θ1,θ2, . . . ,θN ]> ∈ RN×dim(θ),
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Figure 2.1. (a) Four functions drawn randomly from the GP prior. (b) The corre-
sponding posterior distribution computed using (2.13) and (2.14) afterN = 5 samples.

y = [Ĵ(θ1), Ĵ(θ2), . . . , Ĵ(θN)]> ∈ RN ,

the posterior (predictive), cost distribution can be computed for a policy parameter-

ized by θ∗ as, Ĵ∗ ≡ Ĵ(θ∗) ∼ N (E[Ĵ∗], s
2
∗),

E[Ĵ∗] = k>f∗(Kf + σ2
nI)−1y, (2.13)

s2
∗ = kf (θ∗,θ∗)− k>f∗(Kf + σ2

nI)−1kf∗, (2.14)

where kf∗ = [kf (θ1,θ∗), kf (θ2,θ∗), . . . , kf (θN ,θ∗)]
> and Kf is the positive-definite

kernel matrix, [Kf ]ij = kf (θi,θj).

Figure 2.1 shows a simple 1-dimensional example of the result of randomly drawing

from a GP prior (see [97], Appendix A.2) with m(θ) = 0 and a squared exponential

kernel with σf = 1.0 and ` = 0.15. The corresponding posterior distribution for N = 5

sample points is computed using (2.13) and (2.14) and assuming σn = 0.1. Notice

that this posterior distribution captures uncertainty about the cost for parameters

that are not near the samples. I will discuss in the next section how this property can

be exploited to perform principled exploration to select new parameters to evaluate.
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If prior information regarding the shape of the cost distribution is available, e.g.,

from simulation experiments, the mean function and kernel hyperparameters can be

set accordingly [67]. However, in many cases such information is not available and

model selection must be performed. Typically, when the hyperparameters, Ψf =

{σf , `f , σn}, are unknown, the log marginal likelihood, log p(y|Θ,Ψf ), is used to

optimize the hyperparameters before computing the posterior [97]. The log marginal

likelihood and its derivatives can be computed in closed form,

log p(y|Θ,Ψf ) = −1

2

(
y>α+ log |Kf,n|+N log 2π

)
, (2.15)

∂ log p(y|Θ,Ψf )

∂ψi
=

1

2
tr

(
(αα> −K−1

f,n)
∂Kf,n

∂ψi

)
(2.16)

for ψi ∈ {σf , σn, `1, . . . , `dim(θ)},

where Kf,n = Kf +σ2
nI, α = K−1

f,ny, and |Kf,n| is the determinant of the matrix Kf,n.

Thus, we are free to choose from standard nonlinear optimization methods, such as

Newton’s method or conjugate gradient, to maximize the marginal log likelihood to

perform model selection.

2.3.2 Expected Improvement

To select the (N + 1)th policy parameters, an offline optimization of a selection

criterion is performed with respect to the posterior cost distribution. A commonly

used criterion is expected improvement (EI) [82, 21]. Expected improvement is defined

as the expected reduction in cost, or improvement, over the the best policy previously

evaluated. The improvement of a policy parameter setting, θ∗, is defined as

I∗ =

 µbest − Ĵ∗ if Ĵ∗ < µbest,

0 otherwise,
(2.17)
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where µbest = mini=1,...,N E[Ĵ(θi)]. Since the predictive distribution under the GP

model is Gaussian, the expected value of I∗ is

EI(θ∗, µbest) =

∫ ∞
0

I∗p(I∗)dI∗,

=

∫ ∞
0

I∗N (I∗|µbest − E[Ĵ∗], s
2
∗)dI∗,

= s∗(u∗Φ(u∗) + φ(u∗)), (2.18)

where u∗ = (µbest−E[Ĵ∗])/s∗, and Φ(·) and φ(·) are the CDF and PDF of the normal

distribution, respectively. If s∗ = 0, the expected improvement is defined to be 0.

Both (2.18) and its gradient, ∂EI(θ)/∂θ, are efficiently computable, so we can apply

standard nonlinear optimization methods to maximize EI to select the next policy.

In practice, a parameter ξ is often used to adjust the balance of exploration and

exploitation, u∗ = (µbest − E[Ĵ∗] + ξ)/s∗, where ξ > 0 leads to an optimistic estimate

of improvement and tends to encourage exploration. Setting ξ > 0 can be interpreted

as increasing the expected cost of θbest by ξ. Lizotte [68] showed that cost scale

invariance can be achieved by multiplying ξ by the signal standard deviation, σf .

The Bayesian optimization with expected improvement algorithm is shown in

Algorithm 1.

From a theoretical perspective, Vazquez and Bect [131] proved that using EI se-

lection for Bayesian optimization converges for all cost functions in the reproducing

kernel Hilbert space of the GP covariance function and almost surely for all functions

drawn from the GP prior. However, these results rest on the assumption that the

GP hyperparameters remain fixed throughout the optimization. Recently, Bull [22]

proved convergence rates for EI selection with fixed hyperparameters and the case

where model selection is performed according to a modified maximum marginal like-

lihood procedure. The general case of applying Bayesian optimization with maximum
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Algorithm 1 Bayesian Optimization with Expected Improvement

Input: Previous experience: Θ = [θ1, . . . ,θN ],y = [Ĵ(θ1), . . . , Ĵ(θN)], Iterations : n

1. for i := 1 : n

(a) Perform model selection by optimizing hyperparameters :

Ψ+
f := arg maxΨf

log p(y|Θ,Ψf )

(b) Maximize expected improvement w.r.t. optimized model :

µbest := minj=1,...,|y| E[Ĵ(θj)]

θ′ := arg minθ EI(θ, µbest)

(c) Execute θ′, observe cost, Ĵ(θ′)

(d) Append Θ := [Θ;θ′], y := [y; Ĵ(θ′)]

2. Return Θ,y

marginal likelihood model selection and EI policy selection is not guaranteed to con-

verge to the global optimum.

Although EI is a commonly used selection criterion, a variety of other criteria

have been studied. For example, early work by Kushner considered the probability

of improvement [64] as a criterion for selecting the next input. Confidence bound

criteria (introduced in Chapter 4) have been extensively studied in the context of

global optimization [23, 109] and economic decision making [66]. Recently, work

from Osborne et al. [88, 30] has considered multi-step lookahead criteria that are less

myopic than methods that only consider the next best input. For an excellent tutorial

on Bayesian optimization, see Brochu et al. [21].

One might reasonably expect that using Bayesian optimization for policy search

would be inefficient since it ignores the Markov structure of the problem, relying

instead on Monte Carlo rollouts to perform the optimization. However, the idea

of constructing models of the cost distribution directly in policy parameter space is

a powerful one, especially when the number of policy parameters is small and cost

smoothness properties can be exploited to quickly identify regions of policy space that
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have low expected cost. Indeed, several applications of Bayesian optimization to robot

control tasks exist in the literature. Lizotte et al. [67] applied Bayesian optimization

to discover an Aibo gait that surpassed the state-of-the-art in a comparatively small

number of trials. Tesch et al. [122] used Bayesian optimization to optimize snake

robot gaits in several environmental contexts. Martinez-Cantin et al. [73] describe

an application to online sensing and path planning for mobile robots in uncertain

environments. In Chapter 3, I describe experiments using Bayesian optimization

with a humanoid robot to search for rapid open-loop arm responses that improve

stabilization after impact perturbations.

2.4 Risk-Sensitive Optimal Control

Most stochastic optimal control algorithms, including all algorithms described thus

far, are concerned with minimizing the expected cost, E[Ĵ(θ)]. However, it can be

advantageous to consider more general loss functions of the noisy cost signal, L(Ĵ(θ)),

as the minimization objective. For example, consider the monotonically increasing

loss function,

L(Ĵθ) = −sgn(κ)e−
1
2
κĴθ , (2.19)

where Ĵθ ≡ Ĵ(θ). As is shown in Figure 2.2, depending on the value of the parameter

κ 6= 0, L(Ĵθ) is either concave (κ > 0) or convex (κ < 0). In the deterministic

case, this amounts to a simple reshaping of the relative weight assigned to increasing

cost. However, for stochastic cost signals, minimizing E[L(Ĵθ)] has a more interesting

effect.

To see this, recall that Jensen’s inequality states that for any convex function,

Y = ψ(X), of a random variable, X, the following inequality holds,

E[Y ] ≥ ψ(E[X]). (2.20)
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Figure 2.2. Comparison of an exponential loss functions for two settings of the
risk-sensitivity parameter κ.

Thus, for κ < 0, we have E[L(Ĵθ)] ≥ L(E[Ĵθ]). Intuitively, what this says is that

for a fixed value of E[Ĵθ], policies with wider cost distribution will be avoided since

they will map to larger values of E[L(Ĵθ)]. A system optimizing such an objective

can be viewed as being risk-averse since it explicitly avoids uncertainty. Likewise,

for κ > 0, we have E[L(Ĵθ)] ≤ L(E[Ĵθ]) and minimizing E[L(Ĵθ)] would lead to risk-

seeking behavior, where higher variance policies are preferred for fixed values of E[Ĵθ].

More generally, we say that systems that select policies according to such criteria are

risk-sensitive.

It is typical to define the minimization criterion so that it has the same units as

the original cost function. Thus, the risk-sensitive objective function is

γ(θ, κ) = L−1
(
E[L(Ĵθ)]

)
, (2.21)

= −2κ−1 log
(
−sgn(κ)E[L(Ĵθ)]

)
, (2.22)

= −2κ−1 log
(
E
[
e−

1
2
κĴθ
])
, (2.23)

where γ(θ, 0) = E[Ĵθ].
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Another way to see how this criterion leads to risk-sensitivity is by taking the

second order Taylor expansion of L(Ĵθ) about E[L(Ĵθ)],

L(Ĵθ) ≈ L(E[Ĵθ]) + (Ĵθ − E[Ĵθ])L′(E[Ĵθ]) +
1

2
(Ĵθ)− E[Ĵθ])2L′′(E[Ĵθ]), (2.24)

which implies

E[L(Ĵθ)] ≈ L(E[Ĵθ]) +
1

2
V[Ĵθ]L′′(E[Ĵθ]), (2.25)

L−1(E[L(Ĵθ)]) ≈ E[Ĵθ] +
1

2
V[Ĵθ]

L′′(E[Ĵθ])

L′(E[Ĵθ])
. (2.26)

Thus, for the exponential loss function (2.19), we have

γ(θ, κ) ≈ E[Ĵθ]− 1

4
κV[Ĵθ]. (2.27)

This approximation exposes the role of the parameter κ in determining the risk sen-

sitivity of the system: κ < 0 is risk-averse, κ > 0 is risk-seeking, and κ = 0 is

risk-neutral [134]. Figure 2.3 shows an example application of the risk-sensitive op-

timal control objective (2.23) to a synthetic cost distribution. Two global minima

(in the expected cost sense) are distinguished by their variance using risk-sensitive

objectives, preferring or avoiding high variance policies depending on the value of κ.

A variety of algorithms have been designed to find optimal policies with respect

to risk-sensitive criteria. Early work in risk-sensitive control was aimed at extending

dynamic programming methods to optimize exponential objective functions of the

form (2.23). This work included algorithms for solving discrete Markov decision pro-

cesses (MDPs) [36] and linear-quadratic-Gaussian problems [38, 134]. Borkar derived

a variant of the Q-learning algorithm for finite MDPs with exponential utility [18].

In earlier work, Heger [35] derived a worst-case Q-learning algorithm based on a min-

imax criterion. For continuous problems, Van den Broek et al. [130] generalized path

integral methods from stochastic optimal control to the risk-sensitive case.
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Figure 2.3. Example cost distribution with two global expected cost minima that
have different cost variance. By changing the value of the risk sensitivity parameter
κ, different objective functions arise that differentiate the two solutions based on their
cost variance by preferring either low variance or high variance solutions.

Other work has approached the problem of risk-sensitive control with methods

other than exponential objective functions. For example, several authors have de-

veloped algorithms in discrete model-free RL setting for learning conditional return

distributions [25, 80, 81], which can be combined with policy selection criteria that

take return variance into account. The algorithms presented in this thesis are related

to this line of work, but they are more directly applicable to systems with continuous

state and action spaces. Most recently, Tamar et al. [119] derived an expression for

the variance of the cost-to-go in episodic tasks and used it to derive various risk-

sensitive policy gradient algorithms. The simulation-based algorithm described by

these authors is closely related to the algorithm described in Chapter 5.

Mihatsch and Neuneier [76] developed risk-sensitive variants of TD(0) and Q-

learning by allowing the step size in the value function update to be a function of

the sign of the temporal difference error. For example, by making the step size

for positive errors slightly larger than the step size for negative errors, the value

of a particular state and action will tend to be optimistic, yielding a risk-seeking

system. Recently, this algorithm was found to be consistent with behavioral and
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neurological measurements taken while humans learned a decision task involving risky

outcomes [86], suggesting that some form of risk-sensitive TD may be used in the

brain.

The connection between these types of methods and biological learning and control

processes is an active area of research in the biological sciences. For example, some

neuroscience researchers have identified separate neural encodings for expected cost

and cost variance that appear to be involved in risk-sensitive decision making [96, 126].

Recent motor control experiments suggest that humans select motor strategies in a

risk-sensitive way [139, 84, 83]. For example, Nagengast et al. [83] show that control

gains selected by human subjects in a noisy control task are consistent with risk-

averse optimal control solutions. There is also an extensive literature on risk-sensitive

foraging behaviors in a wide variety of species [43, 10, 87].

2.5 Discussion

Solving dynamic control tasks on robot systems is generally a hard problem. How-

ever, the various challenges that arise in such problems can be understood and ad-

dressed within the framework of optimal control. A variety of algorithms exist for

finding approximate, local, or global optimal policies. However the suitability of any

particular algorithm is strongly determined by the properties of the problem at hand.

For example, many robot control tasks can be characterized as having significant

stochasticity, continuous state and action spaces, and limited or inaccurate model

information.

One class of algorithms appropriate for solving such tasks are policy search meth-

ods that directly attempt to minimize expected cost by adjusting the parameters of a

control policy. Policy gradient methods are a particularly well-studied type of policy

search algorithms. Typically, these algorithms exploit some structure of the problem

to efficiently compute sample-based estimates of the gradient of the expected cost.
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Carefully performing gradient descent with these algorithms produces locally optimal

solutions. Another approach is to treat the optimal control problem as a general

stochastic optimization problem and apply a method such as Bayesian optimization.

Bayesian optimization algorithms work by nonparametrically estimating the cost dis-

tribution conditioned on the policy parameters and using this distribution to select

the next policy parameters in a principled fashion. These methods assume very little

about the structure of the problem and have been successfully applied to perform

efficient global policy search. However, their applicability is limited to problems with

low-dimensional policy parameterizations.

The vast majority of stochastic optimal control and RL algorithms are designed

to minimize expected cost. However, more general optimization criteria, such as

those that consider performance variation, may play an important role in generating

flexible dynamic control in robot systems. Risk-sensitive optimal control is broadly

concerned with optimization criteria that capture not only the expected cost, but also

the variance of the cost. A variety of algorithms exist for solving risk-sensitive control

problems, but few examples exist of model-free risk-sensitive policy search methods.

The algorithms described in Chapters 4 and 5 are contributions to this general class

of methods.

In the next chapter, I describe an application of Bayesian optimization to the

dynamic control task of using rapid open-loop arm motions to help stabilize a dy-

namically balancing robot after impact perturbations. These experiments produced

learned policies with measurable performance benefits in very few trials, but also lead

to observations of significant policy-dependent cost variance that motivate the need

for more general risk-sensitive policy search methods.
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CHAPTER 3

LEARNING RAPID STABILIZING ARM MOTIONS VIA
GLOBAL POLICY SEARCH

3.1 Introduction

The successful deployment of mobile humanoid robots in dynamic environments

will require solutions to many challenging hardware, perception, and control prob-

lems. One particularly challenging control problem is that of maintaining stability in

the face of postural perturbations caused by impacts or unpredicted terrain changes.

The best solutions to these problems will exhibit a high degree of resourcefulness,

exploiting many actuators and innate dynamics to achieve rapid, robust, and efficient

stabilization. Indeed, a typical adult human exhibits a remarkable ability to gener-

ate whole-body recovery strategies that frequently involve rapid arm movements that

co-occur with the lower body response [75, 72]. Biomechanics researchers have made

significant progress toward understanding the functional contributions of these move-

ments under different experimental conditions [78, 101, 128, 93]. However, relatively

little work has focused on controlling arm recovery responses in robot systems.

In this chapter, I provide an overview of previous research on upper body recovery

motions and present experimental results involving a dynamically balancing mobile

manipulator, the uBot-5, that efficiently learns rapid open-loop arm responses to

impact perturbations [59]. In these experiments, I apply Bayesian optimization (Sec-

tion 2.3) to perform global model-free policy search to minimize the expected value

of a simple cost function inspired by observations of arm motion effects in the biome-

chanics literature. The resulting policies exhibit decreased total energy expenditure,
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decreased recovery footprint, and increased ability to stabilize after large impacts.

An unexpected result of these experiments was that, for larger impacts, some poli-

cies stabilized a fraction of the time, leading to very high cost variance, while others

had low variance (either failing or stabilizing predictably). This policy-dependent

cost variance motivated the extensions to the Bayesian optimization algorithm and

subsequent experiments that are described in Chapter 4.

3.2 Background

3.2.1 Arm Recovery Motions in Humans

McIlroy and Maki [75] were perhaps the first to specifically consider arm responses

to external disturbances. In this study, subjects stood upon a platform that deliv-

ered translational perturbations while shoulder and lower leg muscle responses were

measured. They observed that the magnitude of the shoulder response was correlated

with the magnitude and direction of the perturbation. Furthermore, the authors con-

cluded that these movements are unlikely to be startle responses because no apparent

habituation was present over multiple trials. Together, these observations suggested

a possible functional role of arm movements in the recovery behavior.

Researchers have since begun to uncover more about the functional contribu-

tions of the upper extremities during balance recovery. Marigold et al. [72] observed

rapid elevation of the arms during slip recovery in young adults. The authors noted

a marked change in responses after repeated exposure to the same perturbation,

suggesting that whole-body recovery strategies can be short-term adaptive. Troy et

al. [128] observed a similar rapid elevation behavior in slipping experiments performed

on both young and old adults. Using a simplified sagittal plane model, the authors

concluded that arm responses served to reduce trunk rotational velocity immediately

following the slip while repositioning the upper body center of mass away from the

rear support boundary.

30



Similar arm response characteristics have been observed for tripping perturba-

tions [101, 93] and hip disturbances [77, 78]. Misiaszek and Krauss [78] observed

that recovery responses of leg musculature increased in magnitude when arm motions

were voluntarily suppressed. Several studies have demonstrated significant differences

between the responses of young and old subjects [101, 128, 2]. Generally speaking,

younger adults who were capable of faster movements and reduced reaction times

tended to produce fast motions that affected the body angular momentum, while

older subjects tended to resort to more protective strategies such as grasping and

bracing.

Perhaps the most complete functional analysis to date is from Pijnapples et al. [93].

Using a 3D physical model, the authors analyzed the contribution of arm responses in

tripping experiments by calculating what the body angular velocity would have been

had the arms not been present between the perturbation onset and recovery step.

The results of this analysis suggest that, for tripping perturbations during normal

walking, arm recovery motions contribute most significantly to controlling rotation

in the transverse (yaw) plane which helps position the body to successfully take a

recovery step [93]. However, because tripping perturbations induce a rotation in the

transverse plane toward the tripped foot that must be counteracted, it is possible

that similar analyses for a different perturbation modality would produce different

results.

3.2.2 Arm Recovery Motions in Artificial Systems

There is a very rich literature devoted to robust humanoid locomotion and recovery

from perturbation. However, relatively little work exists which aims to create postural

stability controllers that exploit articulated upper bodies, especially in the context of

rapid balance recovery. This is not to imply a lack of empirical success. Indeed, for the

case of bipedal postural stability, the coordination of ankle, hip, and stepping recovery
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strategies has yielded impressive results on real systems (e.g. [111]). However, given

our increasing understanding of human balance recovery, there is reason to suspect

that coordination of the arms may offer significant advantages.

Several researchers have studied model systems that have provided valuable in-

sights. Pratt et al. [95] introduced the Linear Inverted Pendulum Plus Flywheel

model that abstractly models the angular momentum induced by upper body mo-

tions as a flywheel about the body center of mass. Atkeson and Stephens [6] used a

multi-link pendulum model to show that different impact recovery strategies can arise

from a single quadratic optimization criterion, suggesting that whole-body responses

in humans may similarly be the product of a unified control scheme. A recent paper

from Nakada et al. [85] described an increase in balance recovery of a simulated biped

using a learned arm rotation strategy. Other related work has considered quasistatic

contributions of free arm movements in real systems [141, 58].

In the character animation literature, several researchers have produced controllers

for generating whole-body recovery responses. Kudoh et al. [56, 57] formulated a

quadratic programming problem to produce arm swinging motions that stabilized

the system after impacts. Shiratori et al. [107] used human motion capture data

during tripping experiments to create controllers that produced human-like responses

in characters that were tripped under different initial conditions. Macchietto et al. [69]

described a method for directly controlling linear and angular momenta that produced

realistic whole-body balance recovery strategies for standing characters. These results

are among the most impressive in the literature, but it remains unclear how they will

translate to robotic systems with imprecise sensors and models, constrained actuators,

and lower bandwidth control.
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(a) (b)

Figure 3.1. The uBot-5 (a) using prototype hands to grasp a Rubik’s cube and (b)
demonstrating a whole-body pushing behavior.

3.3 Experiments

I performed two experiments to quantify the advantages of whole-body recovery

strategies using a dynamically balancing mobile manipulator, the uBot-5, and an

apparatus designed to impart controlled impact perturbations to the upper torso of

the robot.

3.3.1 The uBot-5

The uBot-5 (Figure 3.1) is an 11-DoF mobile manipulator developed at the Uni-

versity of Massachusetts Amherst [26, 63]. The uBot-5 has two 4-DoF arms, a rotating

trunk, and two wheels in a differential drive configuration. The robot stands approx-

imately 60 cm from the ground and has a total mass of 19 kg. The robot’s torso is

roughly similar to an adult human in terms of geometry and scale, but instead of

legs, the uBot has two wheels attached at the hip. The robot has three interchange-

able heads: a touch LCD screen for human-robot interaction, a stereo camera system

mounted on a pan-tilt unit, and a 1-DOF tilt unit with an ASUS Xtion PRO R© for 3D

point cloud sensing. In Figure 3.1(a), prototype 1-DOF hands are shown, but unactu-
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ated spherical endpoint contacts (Figure 3.1(b)) are used in all recovery experiments

in this thesis. The dynamic manipulation experiments in Chapter 5 involve a simple

1-DoF claw gripper with a servo driven thumb.

All 11 joints are driven by DC motors with planetary gear heads. Joint po-

sition and velocity proportional-integral-derivative (PID) controllers run on an on-

board field-programmable gate array (FPGA) at approximately 2000 Hz. An on-

board PC104 is used to run control software that streams PID references or raw

motor commands over ethernet to the FPGA at approximately 500 Hz. The uBot

has no dedicated force sensors, although some work has been done to control endpoint

forces using motor current measurements [33].

The robot balances using a linear-quadratic regulator (LQR) with feedback from

an onboard inertial measurement unit (IMU) to stabilize around the vertical fixed

point. The LQR controller has proved to be very robust throughout five years of

frequent usage and it remains fixed in the experiments. The robot’s wheeled base

permits a fast and energy efficient solution to upright stability that is achieved using

well-understood techniques from optimal control. This makes the uBot a unique and

attractive experimental platform for studying the problem of upper-body recovery

because it allows one to assess the influence of arm motions on the stabilized system

without first solving the difficult legged recovery problem.

3.3.2 Impact Pendulum

The robot was placed in a balancing configuration with the dorsal side of its torso

aligned with a 3.3 kg mass suspended from the ceiling (Figure 3.2). The mass was

pulled away from the robot to a fixed angle and released, producing a controlled

impact between the swinging mass and the robot’s upper torso. This device is similar

that used by Hasson et al. [34] in a human study aimed at developing predictive

models for step recovery after impact perturbations. The robot was attached to
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3.3 kg 60 cm

19 kg

Figure 3.2. The uBot-5 situated in the impact pendulum apparatus.

the ceiling with a loose-fitting safety rig designed to prevent the robot from falling

completely, while not affecting the performance of the controlled response. Impacts

were detected using the robot’s onboard IMU and arm responses were initiated within

approximately 50 ms. The arm initial conditions were fixed across trials.

Two learning experiments were performed using different impact magnitudes. I

aimed to evaluate the hypotheses that the robot could learn to exploit dynamic in-

teractions between its arms and the LQR to

1. reduce the spatial footprint of the recovery,

2. reduce the total energy expenditure, and

3. increase robustness to large perturbations.

In the first experiment, the robot was situated at the base of the impact pendulum,

and the release angle was chosen such that the robot could reliably recover balance
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using only the wheel LQR controller. The momentum of the pendulum mass prior to

impact was estimated to be 5.6 Ns with a measurement error of ±0.8 Ns by analyzing

video footage of the experiment. The impact duration could not be accurately inferred

from the video, but it appeared to be between 1 and 2 video frames, or 1/25 to

2/25 s. In the second experiment, the impact magnitude was increased so that a

fixed arm policy would fail to stabilize the system a significant fraction of the time.

The perturbation in this case was approximately 6.7± 1.0 Ns.

3.3.3 Optimal Control Formulation

This problem is well suited for model-free policy optimization since there are sev-

eral physical properties, such as joint friction, wheel backlash, and tire slippage, that

make the system difficult to model accurately. In addition, although the underlying

state and action spaces are high dimensional (22 and 8, respectively), low-dimensional

policy spaces that contain high-quality solutions are relatively straightforward to iden-

tify.

Shoulder and elbow pitch motion trajectories were generated using the cubic spline

method [24]. In this approach, given a sequential list of joint positions, {α0, . . . , αk},

velocities, {α̇0, . . . , α̇k}, and relative times, {t1, . . . , tk}, each trajectory segment is

computed by first solving the set of polynomial equations,

αi = a, (3.1)

αi+1 = a+ bti+1 + ct2i+1 + dt3i+1, (3.2)

α̇i = b, (3.3)

˙αi+1 = b+ 2cti+1 + 3dt2i+1, (3.4)

then using these coefficients to define the trajectory generating function between

waypoints i and i+ 1,
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αii+1(t) = a+ b(t− ti) + c(t− ti)2 + d(t− ti)3, (3.5)

where t0 = 0. In the experiments, arm motions were constrained to be symmetric in

the sagittal plane, so a single cubic spline parameterization described the motion for

both arms. The spline parameters were θ = [αshoulder, αelbow, twp, tf ], where αshoulder

and αelbow are the shoulder and elbow waypoint positions, respectively. The remaining

two time parameters describe the desired time to reach the waypoint positions and

the time to return to the starting configuration. The waypoint velocity parameters

were set to 0 and the trajectory was followed using fixed PD controllers. Using

prior knowledge about what policies are feasible, these parameters were conservatively

constrained:

1.5 rad ≥ αshoulder ≥ −1.5 rad, (3.6)

1.0 rad ≥ αelbow ≥ −1.0 rad, (3.7)

1.0 ≥ twp ≥ d(αshoulder, αelbow), (3.8)

1.5 ≥ tf ≥ d(αshoulder, αelbow) + twp, (3.9)

where the function d(αshoulder, αelbow) returns the minimum time required to move to

the waypoint positions given the uBot’s maximum joint velocity: 5π/4 rad/s.

A simple cost function was defined to encourage spatially and energetically efficient

solutions:

J(θ) =

∫ T

0

(
x2
wheel(t) + ẋ2

wheel(t) + g(x(t))I(t)V
)
dt, (3.10)

where xwheel(t) and ẋwheel(t) are the wheel position and velocity at time t, respectively,

I(t) is the total absolute current being drawn by all motors, and V = 13.1 volts is

the system voltage. The state vector x(t) contains the IMU readings, a failure bit,
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and positions, velocities, and motor currents for all joints at time t. The function

g(x(t)) captures the additional energetic cost associated with a failure to recover. If

x(t) ∈ FailureStates, then g(x(t)) = 0.005. Otherwise, g(x(t)) = 0.001. A state

x(t) ∈ FailureStates if and only if the state x(t) is detected as a failure or ∃t′ < t

such that x(t′) ∈ FailureStates. Failure states were detected reliably as large spikes

in the IMU data. In all experiments, T = 3.5 s and the sampling frequency was

100 Hz.

I applied Bayesian optimization (Section 2.3) to optimize the policy parameters

with respect to the expected cost, E[Ĵ(θ)]. An anisotropic squared exponential kernel

was used in the GP prior and the hyperparameters were optimized after each trial with

respect to a maximum a posteriori (MAP) criterion. To achieve cost scale invariance,

the maximum likelihood mean was computed analytically after each trial and used

in the log likelihood computation [68]. A prior was placed over the logarithm of the

length-scale hyperparameters: log(`) ∼ N (0, 32I). Although this prior is quite broad

for this problem1, it provides a flexible way to constrain the optimization process in

the early stages of learning [68].

The gradients of the log likelihood and log prior terms were computed analyti-

cally and the optimization of hyperparameters was performed using the NLOPT [40]

implementation of the Method of Moving Asymptotes (MMA) [117]. After each

trial, the hyperparameters were optimized starting from the MAP estimate from the

previous trial, and 30 random restarts were performed to decrease the chance of

arriving at a low-quality local optimum. Policy parameters were selected using EI

(ξ = 0.1·σf ), where EI maximization was performed using MMA under the inequality

constraints (3.6)–(3.9). Forty random restarts were performed during EI maximiza-

tion and the best among these was used to select the next data point.

1The maximum parameter range is 3 units while the prior states that there is about a 95% chance
that the length-scales are between 403 and 0.002.
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3.4 Results

A total of 35 trials was performed in the high impact case and 30 in the low

impact case. After the learning trials, a greedy policy was selected by maximizing

the probability of improvement [64] with respect to the posterior distribution,

P (Ĵ(θ) ≤ µbest) = Φ

(
µbest − E[Ĵ(θ)]

s(θ)

)
, (3.11)

where µbest = mini=1,...,N E[Ĵ(θi)] and Φ(·) is the CDF of the normal distribution.

The greedy policies were

θlow = [−0.681, 0.681, 0.174, 1.5] and

θhigh = [−0.562,−0.562, 0.143, 1.478]

for the low and high impact cases, respectively. The symmetry in the shoulder and

elbow displacements appeared to be a consequence of the constraints, (3.8) and (3.9),

and the desire to maximize joint movements over a short initial response time. This

symmetry was not strictly observed during the learning process. Interestingly, the

rotations of the shoulder and elbow joints are opposite in the low impact policy. This

produces a contracted backward arm motion as opposed to the extended backward

arm motion in the high impact policy. A 25% higher peak shoulder torque (inferred

from motor current data) was observed 0.1 seconds post-impact for the high impact

policy.

To evaluate the three hypotheses regarding spatial footprint, total energy, and

robustness, 10 trials using the learned greedy policy and a control (fixed arm) policy

were performed for each impact magnitude. The learned policies exhibited a 17.1%

reduction in average cost (1554.59 to 1288.34) in the low impact case and a 61.6%

reduction in average cost (4507.36 to 1728.64) in the high impact case. The fixed

39



−0.2 0 0.2 0.4 0.6 0.8
−1

−0.5

0

0.5

1

1.5

2

W
he

el
 V

el
oc

ity
 (m

/s
)

Wheel Position (m) 

 

Arms Responsive
Arms Fixed

−0.2 0 0.2 0.4 0.6 0.8
−1

−0.5

0

0.5

1

1.5

2

Wheel Position (m)

Figure 3.3. Wheel position and velocity trajectories for the learned and fixed arm
policies in both the low impact (left) and high impact (right) cases.

arm policy failed to stabilize in 5 out of the 10 high impact trials. Excluding these

failure trials, the reduction in cost in the high impact case was still 29.7% (2458.98

to 1728.64).

3.4.1 Efficiency Gains

A statistically significant decrease in the recovery footprint was observed when

using the learned arm motions for both impact magnitudes. The wheel trajectories

in Figure 3.3 illustrate this difference. Interestingly, there was also a statistically

significant reduction in total energy expenditure when using the learned arm recovery

motions. The total energy was calculated as E =
∫ T

0
I(t)V dt, where I(t) is the

total absolute current through all motors at time t, and V = 13.1 volts. Table 3.1

summarizes the reduction in average energy expenditure. Since we could not quantify

the true energetic requirements of recovering from a failure, we only included the

successful fixed arm trials in these statistics. Thus, the energy savings reported for

the high impact case is very conservative. These data suggest that the reduction in

wheel motor energy consumption more than compensates for the additional energy

consumed by the shoulder and elbow motors in the learned policies.
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Table 3.1. Comparison of mean energy expenditure averaged over 10 trials. The 5
fixed arm failure trials were excluded from the high impact data because the actual
energy required to recover from a failure was not measured. Thus, we expect the true
energetic gain of the learned policy to be much larger than reported (marked with an
asterisk).

Fixed Arms Learned Response Behrens-Fisher

Low impact 194.03 joules 176.37 joules p < 0.0001

High impact 242.16∗ joules 215.67 joules p = 0.0046

3.4.2 Stability Gains

During the evaluation of the learned high impact policy, the robot successfully

recovered in 10 out of 10 trials. In contrast, the control (fixed arm) policy only

resulted in recovery in 5 out of 10 trials. Figure 3.4 compares an example run of the

learned response to a failure control trial.

It is interesting that a fixed policy and impact magnitude can produce different

stabilization results. Careful analysis of the experiment video showed that the pen-

dulum motion varied very little between trials. However, the state of the robot’s

slight back-and-forth balancing motion at the time of impact was loosely correlated

with the trial outcome. Thus, the system performance under some policies seems

to be sensitive to the initial conditions. This result suggests that it may be neces-

sary to capture the policy-dependent cost variance during the optimization. Such

an approach would, for example, allow the robot to learn the variance of policies for

different impacts and explicitly favor more predictable recovery strategies. Extending

Bayesian optimization to capture this type of policy-dependent cost variance is the

subject of the next chapter.

3.4.3 Uncontrolled Impacts

The learned policies were successfully used to respond to uncontrolled impacts

in the laboratory environment. Using data from the learning trials, a simple impact

magnitude classifier was constructed using low-pass filtered IMU data. The robot
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Figure 3.4. Comparison of the recovery behavior without (left) and with (right)
learned arm motions after a large impact perturbation. The bottom three panels on
the left outlined in red indicate the point of failure when the safety rig was engaged.

successfully responded to various uncontrolled impact perturbations: small bumps

caused by a person walking into it (no arm response), pushing the robot (low impact

arm response), bouncing a dodgeball off of the robot (low impact arm response,

kicking the robot (high impact response), and throwing a large exercise ball at the
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robot (high impact response). Example recovery sequences for push recovery and

exercise ball impact recovery are shown in Figure 3.5.

3.5 Discussion

These results suggest that the integration of arm motions in balance recovery can

reduce the recovery footprint and total energy expenditure, and increase the robot’s

ability to stabilize after large perturbations. Although the uBot’s wheeled base is

very different from that of a bipedal humanoid, there is considerable practical value in

being able to experimentally determine the dynamic effects of upper body responses

using this simpler system. In addition to having direct practical implications for

wheeled mobile manipulators [4, 112, 74], we expect that the observed benefits could

translate to other morphologies by the simple fact that using all available control

resources is better than using only a subset. Indeed, our results are compatible with

previous observations that the magnitude of human lower body recovery responses

increased when arm motions were suppressed [78].

This general problem has several attributes that make it interesting from a control

learning perspective: expensive evaluations, nonlinearity, underactuation, stochastic-

ity, and high-dimensionality. Given a simple cost function and a low-dimensional

policy representation, the Bayesian optimization algorithm was able to discover effec-

tive policies in a small number of trials. The two learned policies produced measurable

efficiency and robustness gains over the wheels-only LQR response. Interestingly, al-

though learning was done with fixed impact perturbations, the policies appear to be

effective against more general, uncontrolled impacts. This suggests that, in practice,

it might be only necessary to construct a small set of recovery policies and select

among them based on, e.g., the perceived impact direction and magnitude.

One benefit of the Bayesian optimization approach that was not emphasized is

the ability to use the learned cost model to interpret the robot’s state of knowledge
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(a) Low impact arm response (b) High impact arm response

Figure 3.5. Example trials of the learned high and low impact arm responses being
selected executed for uncontrolled impact perturbations. (a) The robot uses the
low impact policy in response to a human pushing. (b) The high impact response is
selected to recover from a significantly larger impact. In both cases, impact magnitude
is inferred using a simple classifier on IMU data.
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about the problem during learning. For example, by examining the MAP length-scale

hyperparameters, we can learn something about the relative sensitivity of the cost

with respect to changes in each policy parameter. The length-scales after learning in

the high impact experiment suggested that the cost is most sensitive to changes in

initial response time and shoulder angle, with total movement time and elbow angle

having considerably lower sensitivity. This information could, for example, be used

to identify lower-dimensional policy representations by fixing parameters that have

little effect on the cost.

One of the key observations from these experiments is that different policies can

have different cost variance. Input-dependent variance leads to practical issues in

applying Bayesian optimization since the cost variance in regions of high and low

variance will tend to be underestimated and overestimated, respectively. For tasks

such as impact stabilization, it might also be important to capture the cost variance

of policies while learning to, e.g., select policies that have low cost and low variance.

In the next chapter, I present an extension to the Bayesian optimization algorithm

that supports this kind of policy selection.
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CHAPTER 4

GLOBAL VARIABLE RISK POLICY SEARCH

4.1 Introduction

Model-free policy search methods (Section 2.2) are typically designed to minimize

the expected value of a noisy cost signal by adjusting the parameters of a policy. By

considering only the expected cost of a policy and ignoring cost variance, the solutions

found by these algorithms are by definition risk-neutral. However, in many systems

it can be advantageous to have a more flexible attitude toward risk. For example, a

subsystem at a nuclear power plant might reasonably be risk-averse since even rare

high cost events could have significant practical impact. On the other hand, a robot

attached to a safety apparatus in a laboratory might seek out low probability, low

cost trials to, e.g., attempt to identify the subset of initial conditions that led to such

events. Studies in human motor control and animal behavior suggest that variable

risk sensitivity may also be pervasive in nature [20, 10].

In the previous chapter, I described an application of a particular type of policy

search algorithm, called Bayesian optimization, to the problem of learning arm mo-

tions that help stabilize the uBot after impact perturbations. By virtue of modeling

the distribution of cost using a Gaussian process, Bayesian optimization algorithms

make the assumption that the variance of the cost is the same for all policies in the

search space. In general, this is not true. Indeed, in the experiments described, some

impact recovery policies exhibited high variance, stabilizing in a fraction of the trials,

while other policies had much lower variance. By capturing this policy-dependent
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variance while learning, more flexible policy selection criteria can be applied to, e.g.,

explicitly favor predictable recovery strategies over those with higher risk.

In this chapter, I propose a new type of Bayesian optimization algorithm designed

to handle problems with policy-dependent cost variance. The algorithm, called Vari-

ational Bayesian Optimization (VBO), is constructed by replacing the Gaussian pro-

cess model with the Variational Heteroscedastic Gaussian Process model [65] designed

for problems with input-dependent noise. I derive expressions for the expected im-

provement of a policy under the intractable variational predictive distribution that

results from the VHGP model. I also show that confidence bound policy selection

criteria that have been studied in the context of Bayesian optimization have a direct

connection in this setting to risk-sensitive optimal control. Finally, I propose a gener-

alized selection criterion called expected risk improvement that balances exploration

and exploitation in the risk-sensitive optimization setting [61]. Results are presented

from high-magnitude impact recovery experiments with the uBot-5.

4.2 Background

4.2.1 Variational Heteroscedastic Gaussian Process Regression

One limitation of the standard regression model (2.12) is the assumption of in-

dependent and identically distributed noise over the input space. Many data do not

adhere to this simplification and models capable of capturing input-dependent noise

(or heteroscedasticity) are required. The heteroscedastic regression model takes the

form

Ĵ(θ) = J(θ) + ε(θ), (4.1)

ε(θ) ∼ N (0, r(θ)2), (4.2)
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where the noise variance, r(θ)2, is dependent on the input, θ. In the Bayesian setting,

a second GP prior,

g(θ) ∼ GP(µ0, kg(θ,θ
′)), (4.3)

is placed over the unknown log variance function, g(θ) ≡ log r(θ)2 [31, 45, 65]. The

log variance is used is to ensure positivity of the variance function. This prior, when

combined with the GP prior over cost functions (Section 2.3), forms the heteroscedas-

tic Gaussian process (HGP) model. Unfortunately, the HGP model has property that

the computations of the posterior distribution and the marginal log likelihood are in-

tractable, thus making model selection and prediction difficult.

Stochastic techniques, such as Markov chain Monte Carlo (MCMC) [31], offer a

principled way to deal with intractable probabilistic models. However, these methods

tend to be computational demanding. An alternative approach is to analytically

define the marginal probability in terms of a variational density, q(·). By restricting

the class of variational densities by, e.g., assuming q(·) is Gaussian or factored in

some way, it is often possible to define tractable bounds on the quantity of interest.

In the Variational Heteroscedastic Gaussian Process (VHGP) model [65], a variational

lower bound on the marginal log likelihood is used as a tractable surrogate function

for optimizing the hyperparameters.

Let

g = [g(θ1), g(θ2), . . . , g(θN)]> (4.4)

be the vector of latent log noise variances for the N data points. By defining a normal

variational density, q(g) ∼ N (µ,Σ), the following marginal variational bound can be

derived [65],

F (µ,Σ) = logN (y|0,Kf + R)− 1
4
tr(Σ)
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− KL(N (g|µ,Σ)||N (g|µ01,Kg)), (4.5)

where R is a diagonal matrix with elements [R]ii = e[µ]i−[Σ]ii/2. Intuitively, by maxi-

mizing (4.5) with respect to µ and Σ, we maximize the log marginal likelihood under

the variational approximation while minimizing the distance (in the Kullback-Leibler

sense) between the variational distribution and the distribution implied by the GP

prior. By exploiting properties of F (µ,Σ) at its maximum, it is possible to write µ

and Σ in terms of just N variational parameters,

µ = Kg

(
Λ− 1

2
I

)
1 + µ01, (4.6)

Σ−1 = K−1
g + Λ, (4.7)

where Λ is a positive semidefinite diagonal matrix of variational parameters. F (µ,Σ)

can be simultaneously maximized with respect to the variational parameters and

the HGP model hyperparameters, Ψf and Ψg. If the kernel functions kf (θ,θ
′) and

kg(θ,θ
′) are squared exponentials (2.11), then Ψf = {σf , `f} and Ψg = {µ0, σg, `g}.

Notice that the mean function of the cost GP prior is typically set to 0 since the

data can be standardized or the maximum likelihood mean can be calculated and

used when performing model selection [68]. However, a constant hyperparameter,

µ0, is included to capture the mean log variance since setting this value to 0 would

be an arbitrary choice that would generally be incorrect. The gradients of F (µ,Σ)

with respect to the parameters can be computed analytically in O(N3) time (see

Lázaro-Gredilla and Titsias [65] supplementary material), so the maximization prob-

lem can be solved using standard nonlinear optimization algorithms such as sequential

quadratic programming (SQP).

The VHGP model yields a non-Gaussian variational predictive density,

q(Ĵ∗) =

∫
N (Ĵ∗|a∗, c2

∗ + eg∗)N (g∗|µ∗, σ2
∗)dg∗, (4.8)
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where

a∗ = k>f∗(Kf + R)−1y,

c2
∗ = kf (θ∗,θ∗)− k>f∗(Kf + R)−1kf∗,

µ∗ = k>g∗(Λ−
1

2
I)1 + µ0,

σ2
∗ = kg(θ∗,θ∗)− k>g∗(Kg + Λ−1)−1kg∗.

Although this predictive density is intractable, its mean and variance can be calcu-

lated in closed form [65]:

Eq[Ĵ∗] = a∗, (4.9)

Vq[Ĵ∗] = c2
∗ + exp(µ∗ + σ2

∗/2) ≡ s2
∗. (4.10)

4.2.1.1 Example

Figure 4.1(a) shows the result of performing model selection given a GP prior with

a squared exponential kernel and unknown constant noise variance on a synthetic

heteroscedastic data set. Figure 4.1(b) shows the result of optimizing the VHGP

model on the same data. Model selection was performed using SQP to maximize the

marginal log likelihood or, in the case of the VHGP model, the marginal variational

bound. Due to the constant noise assumption, the GP model overestimates the cost

variance in regions of low variance and underestimates in regions of high variance. In

contrast, the VHGP model captures the input-dependent noise structure.

4.3 Variational Bayesian Optimization

There are at least two practical motivations for extending Bayesian optimiza-

tion to capture policy-dependent cost variance. The first reason is to enable metrics

computed on the predictive distribution, such as EI or probability of improvement,
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Figure 4.1. Comparison of fits for the standard Gaussian process model (a) and the
VHGP model (b) on a synthetic heteroscedastic data set.

to return more meaningful values for the problem under consideration. For example,

the GP model in Figure 4.1 would overestimate the expected improvement for θ = 0.6

and underestimate the expected improvement of θ = 0.2. The second reason is that

it creates the opportunity to employ policy selection criteria that take cost variance

into account, i.e., that are risk-sensitive.

I extend the VHGP model to the optimization case by deriving the expression for

expected improvement and its gradient and show that both can be efficiently approx-

imated to several decimal places using Gauss-Hermite quadrature [1] (as is the case

for the predictive distribution itself [65]). Efficiently computable confidence bound

selection criteria are also considered for selecting greedy risk-sensitive policies. A

generalization of EI, called expected risk improvement, is derived that balances explo-

ration and exploitation in the risk-sensitive case. Finally, to address numerical issues

that arise when N is small (i.e., in the early stages of optimization), independent log

priors are added to the marginal variational bound and heuristic sampling strategies

are identified.
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4.3.1 Expected Improvement

Recall from Section 2.3.2 that the expected improvement is defined as the expected

reduction in cost, or improvement, over the the average cost of the best policy previ-

ously evaluated. The probability of the policy parameters, θ∗, having improvement,

I∗, under the variational predictive distribution (4.8) is

q(I∗) =

∫
N (I∗|µbest − a∗, v2

∗)N (g∗|µ∗, σ2
∗)dg∗, (4.11)

where v2
∗ = c2

∗ + eg∗ . The expression for expected improvement then becomes

EI(θ∗, µbest) =

∫ ∞
0

I∗q(I∗)dI∗ (4.12)

=

∫ ∞
0

I∗dI∗

∫
N (I∗|µbest − a∗, v2

∗)N (g∗|µ∗, σ2
∗)dg∗. (4.13)

To get (4.13) into a more convenient form, one can define

u∗ =
µbest − a∗

v∗
, x∗ =

Ĵ∗ − a∗
v∗

, (4.14)

and rewrite the expression for improvement (2.17) as,

I∗ =

 v∗(u∗ − x∗) if x∗ < u∗,

0 otherwise.
(4.15)

By using this alternative form of improvement and changing the order of integration,

we have

EI(θ∗, µbest) =

∫ ∫ u∗

−∞
v∗(u∗ − x∗)φ(x∗)dx∗N (g∗|µ∗, σ2

∗)dg∗. (4.16)

Letting f(x∗) = v∗(u∗ − x∗) and integrating
∫ u∗
−∞ f(x∗)φ(x∗)dx∗ by parts, we have

∫ u∗

−∞
f(x∗)φ(x∗)dx∗ = [f(x∗)Φ(x∗)]

u∗
−∞ −

∫ u∗

−∞
(−v∗)Φ(x∗)dx∗, (4.17)

52



= 0 + v∗ [x∗Φ(x∗) + φ(x∗)]
u∗
−∞ , (4.18)

= v∗(u∗Φ(u∗) + φ(u∗)), (4.19)

where we have used the facts that limx∗→−∞ φ(x∗) = 0 and limx∗→−∞Cx∗Φ(x∗) = 0,

where C is an arbitrary constant. Thus, the expression for expected improvement is

EI(θ∗, µbest) =

∫
v∗(u∗Φ(u∗) + φ(u∗))N (g∗|µ∗, σ2

∗)dg∗. (4.20)

Although this expression is not analytically tractable, it can be efficiently approx-

imated using Gauss-Hermite quadrature [1]. This can be made clear by setting

ρ = (g∗ − µ∗)/
√

2σ∗ and replacing all occurrences of g∗ in the expressions for v∗

and u∗,

EI(θ∗, µbest) =

∫
e−ρ

2 v∗√
2πσ∗

(u∗Φ(u∗) + φ(u∗)) dρ,

≡
∫
e−ρ

2

h(ρ)dρ ≈
k∑
i=1

wih(ρi), (4.21)

where n is the number of sample points, ρi are the roots of the Hermite polynomial,

Hn(x) = (−1)nex
2 dne−x

2

dxn
i ∈ {1, 2, . . . , n}, (4.22)

and the weights are computed as wi = 2n−1n!
√
π

n2Hn−1(ρi)2
. In practice, a variety of tools

are available for efficiently computing both wi and ρi for a given n. In all of my

experiments, n = 45.

Similarly, the gradient ∂EI(θ, µbest)/∂θ can be computed under the integral (4.20)

and the result is of the desired form:

∂EI(θ∗, µbest)

∂θ
=

∫
e−ρ

2

z(ρ)dρ, (4.23)
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where

z(ρ) =
1√

2πσ∗

[ 1

σ∗
v∗ (u∗Φ(u∗) + φ(u∗))

×
(
−∂σ∗
∂θ

+ 2ρ2∂σ∗
∂θ

+
√

2ρ
∂µ∗
∂θ

)
+

∂v∗
∂θ

(u∗Φ(u∗) + φ(u∗)) + v∗
∂u∗
∂θ

Φ(u∗)
]
.

For the squared exponential kernel (2.11), the remaining gradients are

∂σ∗
∂θ

= − 1

σ∗
k>g∗(Kg −Λ−1)−1∂kg∗

∂θ
, (4.24)

∂µ∗
∂θ

= 1>
(

Λ− 1

2
I

)
∂kg∗
∂θ

, (4.25)

∂u∗
∂θ

= − 1

v2
∗

(
v∗
∂a∗
∂θ

+ (µbest − a∗)
∂v∗
∂θ

)
, (4.26)

∂a∗
∂θ

= y>(Kf + R)−1∂kf∗
∂θ

, (4.27)

∂v∗
∂θ

= − 1

v∗
k>f∗(Kf + R)−1∂kf∗

∂θ
, (4.28)[

∂kf∗
∂θ

]
i

= kf (θi,θ∗)(θi − θ∗)>Mf , and (4.29)[
∂kg∗
∂θ

]
i

= kg(θi,θ∗)(θi − θ∗)>Mg. (4.30)

As in the standard Bayesian optimization setting, one can easily incorporate an

exploration parameter, ξ, by setting u∗ = (µbest − a∗ + ξ)/v∗, and maximize EI

using standard nonlinear optimization algorithms. Since flat regions and multiple

local maxima may be present, it is common practice to perform random restarts

during EI optimization to avoid low-quality solutions. In my experiments, I used the

NLOPT [40] implementation of SQP with 25 random restarts to optimize EI.

4.3.2 Confidence Bound Selection

In order to exploit cost variance information for policy selection, we must consider

selection criteria that flexibly take cost variance into account. Although EI performs
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well during learning by balancing exploration and exploitation, it falls short in this

regard since it always favors high variance (or uncertainty) among solutions with

equivalent expected cost. In contrast, confidence bound (CB) selection criteria allow

one to directly specify the sensitivity to cost variance.

The family of confidence bound selection criteria have the general form

CB(θ∗, κ) = E[Ĵ∗] + b(V[Ĵ∗], κ), (4.31)

where b(·, ·) is a function of the cost variance and a constant risk factor, κ, that con-

trols the system’s sensitivity to risk. Such criteria have been extensively studied in the

context of statistical global optimization [23, 109] and economic decision making [66].

Favorable regret bounds for sampling with CB criteria with b(V[J∗], κ) = κ
√

V[J∗] ≡

κs∗ have also been derived for certain types of Bayesian optimization problems [109].

Interestingly, CB criteria have a strong connection to the exponential utility func-

tions of risk-sensitive optimal control [135, 134]. By considering the risk-sensitive

optimal control objective function introduced in Section 2.4,

γ(θ∗, κ) = −2κ−1 logE[e−
1
2
κĴ∗ ], (4.32)

≈ E[Ĵ∗]−
1

4
κV[Ĵ∗], (4.33)

it is clear that policies selected according to a CB criterion with b(V[Ĵ∗], κ) = −1
4
κV[Ĵ∗]

can be viewed as approximate risk-sensitive optimal control solutions. Furthermore,

since the selection is performed with resect to the predictive distribution (4.8), policies

with different risk characteristics can be selected on-the-fly, without having to per-

form additional policy executions. This is a distinguishing property of this approach

compared to other sample-based risk-sensitive optimal control algorithms that must

perform separate optimizations that require policy executions to produce policies with

different risk-sensitivity.
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In practice, one typically sets b(V[Ĵ∗], κ) = κ

√
V[Ĵ∗] so that terms of the same

units are combined and the parameter κ has a straightforward interpretation. It is

noteworthy that other functions of the mean and variance can also be used to form

useful risk-sensitive criteria. For example, the Sharpe Ratio, SR = E[Ĵ∗]/s∗, is a

commonly used metric in financial analysis [106]. Since the mean and variance of

the VHGP model are analytically computable, extensions that optimize such criteria

would be straightforward to implement.

4.3.3 Expected Risk Improvement

The primary advantage CB selection criteria offer is the ability to flexibly spec-

ify sensitivity to risk. However, CB criteria are greedy with respect to risk-sensitive

objectives and therefore do not have the same exploratory quality as EI does for ex-

pected cost minimization. It is therefore natural to consider whether the EI criterion

could be extended to perform risk-sensitive policy selection in a way that balances

exploration and exploitation.

Schonlau et al. [105] considered a generalization of EI where the improvement for

θ∗ was defined as

Iρ∗ = max{0, (µbest − Ĵ∗)ρ}, (4.34)

where ρ is an integer-valued parameter that affects the relative importance of large,

low probability improvements and small, high probability improvements. Interest-

ingly, the authors showed that for ρ = 2, EI(θ∗, ρ) = E[Ĵ∗]
2 + V[Ĵ∗], which can be

interpreted as a risk-seeking policy selection strategy. However, to perform balanced

exploration in systems with more general risk sensitivity, a different generalization of

EI is needed.
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To address this problem, we define the expected risk improvement (ERI) criterion.

In this case, the risk improvement for the policy parameters θ∗ is defined as

Iκ∗ =

 µbest + κsbest − Ĵ∗ − κs∗ if Ĵ∗ + κs∗ < µbest + κsbest,

0 otherwise,
(4.35)

where

i = arg min
j=1,...,N

E[Ĵ(θj)] + κs(θj), (4.36)

µbest = E[Ĵ(θi)], (4.37)

sbest = s(θi). (4.38)

Intuitively, the risk improvement captures the reduction in the value of the risk-

sensitive objective, E[Ĵ ] + κs, over the best policy previously evaluated. Following

a similar derivation as for EI, the expected risk improvement under the variational

distribution is

ERI(θ∗, κ, µbest, sbest) =

∫ ∞
0

Iκ∗ q(I
κ
∗ )dIκ∗

=

∫
v∗(u∗Φ(u∗) + φ(u∗))N (g∗|µ∗, σ2

∗)dg∗, (4.39)

where u∗ = (µbest−a∗+κ(sbest−s∗))/v∗. Thus, ERI can be viewed as a straightforward

generalization of EI, where ERI = EI if κ = 0. Figure 4.2 shows how the ERI metric

differs from EI in two simple examples with synthetic cost distributions.

4.3.4 Coping with Small Sample Sizes

4.3.4.1 Log Hyperpriors

Numerical precision problems are commonly experienced when performing model

selection (which requires kernel matrix inversions and determinant calculations) using
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Figure 4.2. Qualitative comparison of ERI and EI for two simple synthetic cost
distributions. The θbest point for each criterion colored in correspondence with the
lines. The EI and ERI are scaled in each plot for illustration purposes.

small amounts of data. To help avoid such numerical instability in the VHGP model

when N is small, we augment F (µ,Σ) with independent log-normal priors for each

hyperparameter,

F̂ (µ,Σ) = F (µ,Σ) +
∑
ψk∈Ψ

logN (logψk|µk, σ2
k), (4.40)

where Ψ = Ψf ∪ Ψg is the set of all hyperparameters. Lizotte [68] showed that em-

pirical performance can be improved in the standard Bayesian optimization setting

by incorporating log-normal hyperpriors into the model selection procedure. In prac-

tice, these priors can be quite vague and thus do not require significant experimenter

insight. For example, in the experiments described in this chapter, I set the log prior

on length-scales so that the width of the 95% confidence region is at least 20 times

the actual policy parameter ranges.
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As is the case with standard marginal likelihood maximization, F̂ (µ,Σ) may have

several local optima. In practice, performing random restarts helps avoid low-quality

solutions (especially when N is small). In all experiments, SQP was used with 10

random restarts to perform model selection.

4.3.4.2 Sampling

It is well known that selecting policies based on distributions fit using very little

data can lead to myopic sampling and premature convergence [41]. For example,

if one were unlucky enough to sample only the peaks of a periodic cost function,

there would be good reason to infer that all policies have approximately equivalent

(high) cost. Incorporating external randomization is one way to help alleviate this

problem. For example, it is common to obtain a random sample of N0 initial policies

prior to performing optimization. Sampling according to EI with probability 1 − ε

and randomly otherwise can also perform well empirically. In the standard Bayesian

optimization setting with model selection, ε-random EI selection has been shown to

yield near-optimal global convergence rates [22].

Randomized CB selection with, e.g., κ ∼ N (0, 1) can also be applied when the pol-

icy search is aimed at identifying a spectrum of policies with different risk sensitivities.

However, since this technique relies completely on the estimated cost distribution, it

is most appropriate to apply after a reasonable initial estimate of the cost distribution

has been obtained.

The Variational Bayesian Optimization (VBO) algorithm is shown in Algorithm 2.

4.4 Experiments

4.4.1 Synthetic Data

As an illustrative example, in Figure 4.3 we compare the performance of the VBO

to standard Bayesian optimization in a simple 1-dimensional noisy optimization task.
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Algorithm 2 Variational Bayesian Optimization

Input: Previous experience: Θ = [θ1, . . . ,θN ],y = [Ĵ(θ1), . . . , Ĵ(θN)], Risk factor :
κ, Iterations : n

1. for i := 1 : n

(a) Perform model selection by optimizing hyperparameters and variational
parameters using, e.g., SQP with random restarts :

Ψ+
f , Ψ+

g , Λ+ := arg max F̂ (µ,Σ)

(b) Maximize policy selection criterion w.r.t. optimized model :

• Confidence Bound :

θ′ := arg minθ Eq[Ĵ(θ)] + κ
√
Vq[Ĵ(θ)]

• Expected Improvement :
µbest := minj=1,...,|y| Eq[Ĵ(θj)]
θ′ := arg minθ EI(θ, µbest)

• Expected Risk Improvement :

b := arg minj=1,...,|y| Eq[Ĵ(θj)] + κ
√

Vq[Ĵ(θj)]

µbest := Eq[Ĵ(θb)]

sbest :=
√

Vq[Ĵ(θb)]

θ′ := arg minθ ERI(θ, κ, µbest, sbest)

(c) Execute θ′, observe cost, Ĵ(θ′)

(d) Append Θ := [Θ;θ′], y := [y; Ĵ(θ′)]

2. Return Θ,y
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For this task, the true underlying cost distribution (Figure 4.3(a)) has two global

minima (in the expected cost sense) with different cost variances. Both algorithms

begin with the sameN0 = 10 random samples and perform 10 iterations of EI selection

(ξ = 1.0, ε = 0.25). In Figure 4.3(b), we see that Bayesian optimization succeeds

in identifying the regions of low cost, but it cannot capture the policy-dependent

variance characteristics.

In contrast, VBO reliably identifies the minima and approximates the local vari-

ance characteristics. Figure 4.3(d) shows the result of applying two different confi-

dence bound selection criteria to vary risk sensitivity. In this case, −CB(θ∗, κ) was

maximized, where

CB(θ∗, κ) = Eq[Ĵ∗] + κs∗. (4.41)

Risk factors κ = −1.5 and κ = 1.5 were used to select a risk-seeking and risk-averse

policy parameters, respectively.

4.4.2 Noisy Pendulum

As another simple example, I considered a swing-up task for a noisy pendulum sys-

tem. In this task, the maximum torque output of the pendulum actuator is unknown

and is drawn from a normal distribution at the beginning of each episode. As a rough

physical analogy, this might be understood as fluctuations in motor performance that

are caused by unmeasured changes in temperature. The policy space consisted of

“bang-bang” policies in which the maximum torque is applied in the positive or neg-

ative direction, with switching times specified by two parameters, 0 ≤ t1, t2 ≤ 1.5 sec.

Thus, θ = [t1, t2]. The cost function was defined as

J(θ) =

∫ T

0

0.01α(t) + 0.0001u(t)2dt, (4.42)
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Figure 4.3. (a) An example latent noise distribution with two equivalent expected
cost minima with different cost variance. (b) The distribution learned after 10 iter-
ations of Bayesian optimization with EI selection and (c) after 10 iterations of VBO
with EI selection (using the same initial N0 = 10 random samples for both exper-
iments). Bayesian optimization succeeded in identifying the minima, but it cannot
distinguish between high and low variance solutions. (d) Confidence bound selection
criteria are applied to select risk-seeking and risk-averse policy parameters given the
distribution learned using VBO.
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where 0 ≤ α(t) ≤ π is the pendulum angle measured from upright vertical, T =

3.5 sec, and u(t) = τmax if 0 ≤ t ≤ t1, u(t) = −τmax if t1 < t ≤ t1 + t2, and

u(t) = τmax if t1 + t2 < t ≤ T . The system always started in the downward vertical

position with zero initial velocity and the episode terminated if the pendulum came

within 0.1 radians of the upright vertical position. The parameters of the system were

l = 1.0 m, m = 1.0 kg, and τmax ∼ N (4, 0.32) Nm. With these physical parameters,

the pendulum must (with probability ≈ 1.0) perform at least two swings to reach

vertical in less than T seconds.

The cost function (4.42) suggests that policies that reach vertical as quickly as

possible (i.e., using the fewest swings) are preferred. However, the success of an

aggressive policy depends on the torque generating capability of the pendulum. With

a noisy actuator, it is reasonable to expect aggressive policies to have higher variance.

An approximation of the cost distribution obtained via discretization (N = 40000) is

shown in Figure 4.4(a). It is clear from this figure that regions around policies that

attempt two-swing solutions (θ = [0.0, 1.0], θ = [1.0, 1.5]) have low expected cost,

but high cost variance.

Figure 4.4(b) shows the results of 25 iterations of VBO using EI selection (N0 =

15, ξ = 1.0, ε = 0.2) in the noisy pendulum task. After N = 40 total evaluations,

the expected cost and cost variance are sensibly represented in regions of low cost.

Figure 4.5 illustrates the behavior of two policies selected by minimizing the CB

criterion (4.41) on the learned distribution with κ = ±2.0. The risk-seeking policy

(θ = [1.03, 1.5]) makes a large initial swing, attempting to reach the vertical position

in two swings. In doing so, it only succeeds in reaching the goal configuration when

the unobserved maximum actuator torque is large (greater than E[τmax] + σ[τmax]).

The risk-averse policy (θ = [0.63, 1.14]) always produces three swings and exhibits

low cost variance, though it has higher cost than the risk-seeking policy when the

maximum torque is large (15.93 versus 13.03).
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Figure 4.4. (a) The cost distribution for the simulated noisy pendulum system
obtained by a 20x20 discretization of the policy space. Each policy was evaluated
100 times to estimate the mean and variance (N = 40000). (b) Estimated cost
distribution after 25 iterations of VBO with 15 initial random samples (N = 40).
Because of the sample bias that results from EI selection, the optimization algorithm
tends to focus modeling effort in regions of low cost.

It is often easy to understand the utility of risk-averse and risk-neutral policies, but

the motivation for selecting risk-seeking policies might be less clear. The above result

suggests one possibility: the acquisition of specialized, high-performance policies.

For example, in some cases risk-seeking policies could be chosen in an attempt to

identify observable initial conditions that lead to rare low-cost events. Subsequent

optimizations might then be performed to direct the system to these initial conditions.

One could also imagine situations when the context demands performance that lower

risk policies are very unlikely to generate. For example, if the minimum time to goal

was reduced so that only two swing policies had a reasonable chance of succeeding. In

such instances it may be desirable to select higher risk policies, even if the probability

of succeeding is quite low.

4.4.3 Variable Risk Balance Recovery with the uBot-5

In the experiments described in the previous chapter, the energetic and stabilizing

effects of rapid arm motions on the LQR stabilized system were evaluated in the con-

64



1 0 1 2 3 4 5 6 7

α
8

6

4

2

0

2

4

α̇

(a) τmax = 3.4

1 0 1 2 3 4 5 6 7

α
8

6

4

2

0

2

4

α̇

(b) τmax = 3.7

1 0 1 2 3 4 5 6 7

α
8

6

4

2

0

2

4

α̇

(c) τmax = 4.0

1 0 1 2 3 4 5 6 7

α
8

6

4

2

0

2

4

α̇

(d) τmax = 4.3

1 0 1 2 3 4 5 6 7

α
8

6

4

2

0

2

4

α̇

(e) τmax = 4.6

1 0 1 2 3 4 5 6 7

α

6

4

2

0

2

4

α̇

(f) τmax = 4.2

1 0 1 2 3 4 5 6 7

α

6

4

2

0

2

4

α̇

(g) τmax = 4.3

1 0 1 2 3 4 5 6 7

α

6

4

2

0

2

4

α̇

(h) τmax = 4.4

1 0 1 2 3 4 5 6 7

α

6

4

2

0

2

4

α̇

(i) τmax = 4.5

1 0 1 2 3 4 5 6 7

α

6

4

2

0

2

4

α̇

(j) τmax = 4.6

Figure 4.5. Performance of risk-averse (a)-(e) and risk-seeking (f)-(j) policies as the
maximum pendulum torque is varied. Shown are phase plots with the goal regions
shaded in green. The risk-averse policy always used three swings and consistently
reached the vertical position before the end of the episode. The risk-seeking policy
used longer swing durations, attempting to reach the vertical position in only two
swings. However, this strategy only pays off when the unobserved maximum actuator
torque is large.

text of recovery from impact perturbations. One observation we made was that high

energy impacts caused a subset of possible recovery policies to have high cost vari-

ance: successfully stabilizing in some trials, while failing to stabilize in others. In this

section, I discuss subsequent impact recovery experiments where VBO was applied

select risk-sensitive policies under more general conditions involving larger impact

perturbations, an increased set of arm initial conditions, and a policy representation

that permitted more flexible, asymmetric arm motions [60].

The robot was placed in a balancing configuration with its upper torso aligned

with a 3.3 kg mass suspended from the ceiling (Figure 3.2). The mass was pulled away

from the robot to a fixed angle and released, producing a controlled impact between

the swinging mass and the robot. The pendulum momentum prior to impact was

9.9 ± 0.8 Ns and the resulting impact force was approximately equal to the robot’s

weight. The robot was consistently unable to recover from this perturbation using

only the wheel LQR (see the rightmost column of Figure 4.6).
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The parameterized policy controlled each arm joint according to an exponential

trajectory, τi(t) = e−λit, where 0 ≤ τi(t) ≤ 1 is the commanded DC motor power for

joint i at time t. The λ parameters were paired for the shoulder/elbow pitch and the

shoulder roll/yaw joints. This pairing allowed the magnitude of dorsal and lateral

arm motions to be independently specified. The pitch (dorsal) motions were specified

separately for each arm and the lateral motions were mirrored, which reduced the

number of policy parameters to 3. The range of each λi was constrained: 1 ≤ λi ≤ 15.

At time t, if ∀i τi(t) < 0.25, the arms were retracted to a nominal configuration (the

mean of the initial configurations) using a fixed, low-gain linear position controller.

The cost function was designed to encourage energy efficient solutions that suc-

cessfully stabilized the system:

J(θ) = h(x(T )) +

∫ T

0

1

10
I(t)V (t)dt, (4.43)

where I(t) and V (t) are the total absolute motor current and voltage at time t, respec-

tively, T = 3.5 s, and h(x(T )) = 5 if x(T ) ∈ FailureStates, otherwise h(x(T )) = 0.

After 15 random initial trials, we applied VBO with EI selection (ξ = 1.0, ε = 0.2)

for 15 episodes and randomized CB selection (κ ∼ N (0, 1)) for 15 episodes resulting

in a total of N = 45 policy evaluations (approximately 2.5 minutes of total experi-

ence). Since the left and right pitch parameters are symmetric with respect to cost,

we imposed an arbitrary ordering constraint, λleft ≥ λright, during policy selection.

After training, we evaluated four policies with different risk sensitivities selected

by minimizing the CB criterion (4.41) with κ = 2, κ = 0, κ = −1.5, and κ = −2.

Each selected policy was evaluated 10 times and the results are shown in Figure 4.6.

The sample statistics confirm the algorithmic predictions about the relative riskiness

of each policy. In this case, the risk-averse and risk-neutral policies were very similar

(no statistically significant difference between the mean or variance), while the two
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Figure 4.6. Data collected over 10 trials using policies identified as risk-averse,
risk-neutral, and risk-seeking after performing VBO. The policies were selected using
confidence bound criteria with κ = 2, κ = 0, κ = −1.5, and κ = −2, from left to
right. The sample means and two times sample standard deviations are shown. The
shaded region on the top part of the plot contains all trials that resulted in failure to
stabilize. Ten trials with a fixed-arm policy are plotted on the far right to serve as a
baseline level of performance for this impact magnitude.

risk-seeking policies had higher variance (for κ = −2, the differences in both the

sample mean and variance were statistically significant).

For κ = −2, the selected policy produced an upward laterally-directed arm motion

that failed approximately 50% of the time. In this case, the standard deviation of

cost was sufficiently large that the second term in CB objective (4.41) dominated,

producing a policy with high variance and poor average performance. A slightly

less risk-seeking selection (κ = −1.5) yielded a policy with conservative low-energy

arm movements that was more sensitive to initial conditions than the lower risk

policies. This exertion of minimal effort could be viewed as a kind of gamble on

initial conditions. Figure 4.7 gives a qualitative comparison of two successful trials

executing the risk-averse and risk-seeking policies.
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(a) Low risk policy, κ = 2.0 (b) High risk policy, κ = −2.0

Figure 4.7. Time series (duration: 1 second) showing two successful trials execut-
ing low-risk (a) and high-risk (b) policies selected using confidence bound criteria on
the learned cost distribution. The low-risk policy produced an asymmetric dorsally-
directed arm motion with reliable recovery performance. The high-risk policy pro-
duced an upward laterally-directed arm motion that failed approximately 50% of the
time.
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4.5 Discussion

In many real-world control problems, it can be advantageous to adjust risk sensi-

tivity based on runtime context. For example, systems whose environments change

in ways that make failures more or less costly (such as operating around catastrophic

obstacles or in a safety harness) or when the context demands that the system seek

low-probability high-performance events. Perhaps not surprisingly, this variable risk

property has been observed in a variety of animal species, from simple motor tasks

in humans to foraging birds and bees [20, 10].

However, most methods for learning policies by interaction focus on the risk-

neutral minimization of expected cost. Extending Bayesian optimization methods to

capture policy-dependent cost variance creates the opportunity to select policies with

different risk sensitivities. Furthermore, the ability to efficiently vary risk sensitivity

offers an advantage over existing model-free risk-sensitive control techniques that

require separate optimizations and additional policy executions to produce policies

with different risk.

This variable risk property was illustrated in experiments applying VBO to the

problem of impact stabilization. After a short period of learning, an empirical com-

parison of policies selected with different confidence bound criteria confirmed the

algorithmic predictions about the relative riskiness of each policy. However, how

to set the system’s risk sensitivity for a particular task remains an important open

problem. In particular, we saw that when variance is very large for some policies,

risk-seeking optimizations must be done carefully to avoid selecting policies with high

variance and poor average performance. Other risk-sensitive policy selection criteria

may be less susceptible to such phenomena.

Several properties of VBO should be considered when determining its suitability

for a particular problem. First, although the computational complexity is the same

as Bayesian optimization, O(N3), the greater flexibility of the VHGP model means
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that VBO tends to require more initial policy evaluations than standard Bayesian op-

timization. In addition, like several other model-free policy search algorithms, such

as Bayesian optimization and finite-difference methods [100], VBO is sensitive to

the number of policy parameters—high-dimensional policies can require many trials

to optimize. These algorithms are therefore most effective in problems where low-

dimensional policy representations are available, but accurate system models are not.

However, there is evidence that policy spaces at least up to 15 dimensions can be effi-

ciently explored with Bayesian optimization if estimates of the GP hyperparameters

can be obtained a priori [67].

Another important consideration is the choice of kernel functions in the GP priors.

In this work, we used the anisotropic squared exponential kernel to encode our prior

assumptions regarding the smoothness and regularity of the underlying cost function.

However, for many problems the underlying cost function is not smooth or regular;

it contains flat regions and sharp discontinuities that can be difficult to represent.

An interesting direction for future work is the use kernel functions with local support.

Kernels that are not invariant to shifts in policy space will be necessary to capture

cost surfaces that, e.g., contain both flat regions and regions with large changes in

cost. Other methods for modeling the heteroscedastic cost distribution would also be

interesting to investigate [125, 108, 45, 138].

In contrast to local methods, such as policy gradient, Bayesian optimization and

VBO can produce large changes in policy parameters between episodes, which could

be undesirable in some situations. One approach to alleviating this potential problem

(other than simply limiting the range of the parameter search) is to combine VBO

with local gradient methods. In the next chapter, I present an algorithm that uses

a local approximation to the cost distribution as a critic structure for performing

incremental, gradient-based updates to the policy parameters. This leads to some

70



attractive properties, such as local convergence, and the opportunity to construct

hybrid approaches that combine gradient descent with local offline policy selection.
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CHAPTER 5

LOCAL VARIABLE RISK POLICY SEARCH

5.1 Introduction

The VBO algorithm presented in the previous chapter performs risk-sensitive pol-

icy search by learning a heteroscedastic cost model and using it to perform global

policy selection using one of several selection criteria. This approach has several

attractive properties, including sample efficiency and the ability to change risk sensi-

tivity without relearning. However, like most other algorithms of this kind, no general

global convergence guarantees exist.

In contrast, gradient-based policy search methods typically have demonstrable

local convergence properties [16]. In this chapter, I propose a simple risk-sensitive

policy search algorithm based on stochastic gradient descent. Instead of using a

global cost model to perform policy selection, the Risk-sensitive Stochastic Gradient

Descent (RSSGD) algorithm uses a local cost model as a critic structure to make

small, incremental changes to the policy parameters. It is straightforward to show

that, under certain assumptions, the general RSSGD update follows the direction of

the gradient of the risk-sensitive objective. Additionally, when a minimum variance

baseline is used, the algorithm can be viewed as taking local steps in the direction of

the risk improvement (Section 4.3.3) over the current policy parameters.

The possibility of interweaving online and offline local policy optimization is also

considered. Offline optimizations, such as those discussed in the previous chapter,

can be used to select local greedy policies or to change risk sensitivity on-the-fly. Ex-
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periments with the uBot-5 learning to lift a heavy, liquid-filled bottle while balancing

are discussed.

5.2 Risk-Sensitive Stochastic Gradient Descent

As in the previous chapter, the simple heteroscedastic regression model is used to

describe the noisy cost signal,

Ĵ(θ) = J(θ) + ε(θ) ≡ Jθ + εθ, (5.1)

where εθ ∼ N (0, r2
θ). The requirement that the noise term, εθ, be normally dis-

tributed is not strictly necessary to derive the expected performance results below

(any mean 0 distribution with variance r2
θ would suffice). However, properties of the

normal distribution are used to calculate the update variance (5.12). We define the

risk-sensitive policy search problem as minimizing a confidence bound objective,

θ? = arg min
θ
F (θ, κ), where (5.2)

F (θ, κ) = Jθ + κrθ, (5.3)

and the risk factor, κ, specifies the system’s sensitivity to risk.

Stochastic gradient descent methods have had significant practical applicability

to solving robot control problems in the expected cost setting [121, 47, 103, 100], so

I focus on extending this approach to the risk-sensitive case. The stochastic gradient

descent algorithm, also called the weight perturbation algorithm [37], is a simple

method for descending the gradient of a noisy objective function. The algorithm

proceeds as follows. Starting with parameters, θ, execute the policy, πθ, and observe

the cost, Ĵθ. Next, randomly sample a parameter perturbation, z ∼ N (0, σ2I),
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execute the perturbed policy, πθ+z, and observe the cost, Ĵθ+z. Finally, update the

policy parameters, θ ← θ + ∆θ, where

∆θ = −η(Ĵθ+z − Ĵθ)z, (5.4)

and η is a step size parameter. Intuitively, this rule updates the parameters in the

direction of z if Ĵθ+z < Ĵθ, and in the direction of −z if Ĵθ+z > Ĵθ. It can be shown

that, in expectation, this update follows the true (scaled) gradient of the expected

cost,

E[∆θ] = −ησ2∇E[Ĵθ], (5.5)

where ∇fθ ≡ ∂f
∂θ

∣∣
θ
.

In contrast, consider the risk-sensitive stochastic gradient descent (RSSGD) up-

date:

∆θ = −η(Ĵθ+z + κr̃θ+z − b(θ))z, (5.6)

where r̃θ+z is an estimate of the cost standard deviation of πθ+z and b(θ) is an

arbitrary baseline function [136] of the policy parameters.

Substituting (5.1) into (5.6) and taking the first order Taylor expansion at θ + z,

we have

∆θ = −η (Jθ+z + εθ+z + κr̃θ+z − b(θ)) z, (5.7)

≈ −η
(
Jθ + z>∇Jθ + εθ + uz>∇rθ + κr̃θ + κz>∇r̃θ − b(θ)

)
z, (5.8)
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≡ ∆̃θ,

where u ∼ N (0, 1). In expectation, this becomes

E[∆̃θ] = −ησ2 (∇Jθ + κ∇r̃θ) , (5.9)

where the expectation is taken with respect to z, u, and εθ. Thus, the update

equation (5.6) is an estimator of the gradient of expected cost that is biased in the

direction of the estimated gradient of the standard deviation to a degree specified by

the risk factor, κ. If the estimator of the cost standard deviation is unbiased, we have

E[∆̃θ] = −ησ2∇F (θ, κ), (5.10)

a scaled unbiased estimate of the gradient of the risk-sensitive objective. Using a

nonparameteric model, such as VHGP, as a local critic will not, in general, lead to

unbiased estimates of the mean and variance of the cost. However, by introducing

bias, these methods can potentially produce useful approximations of the local cost

distribution after only a small number of policy evaluations.

5.2.1 Natural Gradient

From (5.10) it is clear that the unbiasedness of the update is also dependent on

the isotropy of the sampling distribution, z ∼ N (0, σ2I). However, as was shown by

Roberts and Tedrake [100], learning performance can be improved in some cases by

optimizing the sampling distribution variance independently for each policy parame-

ter, z ∼ N (0,Σ). In this case, the expected update becomes biased,

E[∆̃θ] = −ηΣ∇F (θ, κ), (5.11)

75



but it is still in the direction of the natural gradient [3]. To see this, recall that

for probabilistically sampled policies, the natural gradient is defined as F−1∇f(θ),

where F−1 is the inverse Fisher information matrix [44]. When the policy sampling

distribution is mean-zero Gaussian with covariance Σ, the inverse Fisher information

matrix is F−1 = Σ. Thus, (5.11) is in the direction of the natural gradient.

5.2.2 Baseline Selection

The expected update (5.9) is unaffected by the choice of the baseline function,

b(θ), given that it depends only on θ. However, the choice of baseline does affect

the variance of the update. As a rather trivial example that illustrates this point,

consider the difference in performance that would result from setting b(θ) = 0 versus

b(θ) ∼ N (0, 1002), where 100 is large relative to the cost.

The variance of the update (5.6) can be written as,

V[∆̃θ, b(θ)] = η2σ2
(
b(θ)2I− 2Jθb(θ)I− 2κr̃θb(θ)I + J2

θI + 2κJθr̃θI

+κ2r̃2
θI + r4

θI + σ2(∇J>θ ∇JθI +∇Jθ∇J>θ )

+σ2κ(2∇J>θ ∇r̃θI +∇Jθ∇r̃>θ +∇r̃θ∇J>θ )

+σ2r2
θ(∇r>θ∇rθI + 2∇rθ∇r>θ )

+σ2κ2(∇r̃>θ∇r̃θI +∇r̃θ∇r̃>θ )
)
. (5.12)

It is straightforward to show that the baseline that minimizes (5.12) is b(θ) = Jθ+κr̃θ,

which yields

V[∆̃θ, Jθ + κr̃θ] = η2σ2
(
r4
θI + σ2(∇J>θ ∇JθI +∇Jθ∇J>θ )

+σ2κ(2∇J>θ ∇r̃θI +∇Jθ∇r̃>θ +∇r̃θ∇J>θ )

+σ2r2
θ(∇r>θ∇rθI + 2∇rθ∇r>θ )
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+σ2κ2(∇r̃>θ∇r̃θI + ∇r̃θ∇r̃>θ )
)
. (5.13)

However, since Jθ is unknown, we define the baseline using an estimate of the expected

cost, J̃θ. The resulting increase in variance over the optimal baseline is proportional

to the squared error of the expected cost estimate: η2σ2(Jθ − J̃θ)2. The RSSGD

update then becomes

∆θ = −η(Ĵθ+z − J̃θ + κ(r̃θ+z − r̃θ))z. (5.14)

Intuitively, (5.14) reduces to the classical stochastic gradient descent update when

either the system has a neutral attitude toward risk (κ = 0) or when the estimate of

the cost standard deviation is locally constant: ∇r̃θ = 0⇒ r̃θ+z− r̃θ = 0, for small z

such that the linearization holds. Note the relationship between the RSSGD update

and the expected risk improvement (ERI) criterion (4.39) from the previous chapter.

From this point of view, the update can be interpreted as taking steps in the direction

of risk improvement over the current policy parameter setting.

In implementation, it can be helpful to divide the step size by r̃θ so the update

maintains scale invariance to changing noise magnitude (see Algorithm 3). This way,

samples are weighted by the local cost variance estimate so, e.g., large differences in

cost in high variance regions do not cause large fluctuations in the policy parameter

values. On the other hand, large fluctuations in the cost variance estimate could

produce undesirably large or small step sizes. We therefore also constrain the scaled

step size to stay in some reasonable range, e.g., η/r̃θ ∈ [0.01, 0.9]. Although this

approach is heuristic, it does have practical advantages such as weighting updates

according to their perceived reliability.
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5.2.3 Critic Representation

The RSSGD algorithm requires a local model of the cost distribution in the neigh-

borhood of θ. This model can be viewed as a kind of critic because its role is similar

to that played by the critic structure in actor-critic algorithms [9, 51]: it reduces the

variance of the gradient descent update by constructing long-term cost statistics. One

possible approach to constructing a local critic is to apply the same method for learn-

ing heteroscedastic cost models used by the VBO algorithm. In my experiments, the

VHGP [65] model was used to construct the local critic based on noisy observations

of cost, although other algorithms could also be used [45, 125, 108, 138].

As in the VBO algorithm, the critic is updated after each policy evaluation by

recomputing the predictive cost distribution. However, in this case model selection

and prediction are performed using only observations near the current parameteriza-

tion, θ. A nearest neighbor selection can be performed efficiently around the current

policy parameters by storing observations in a KD-tree data structure and using, e.g.,

a k-nearest neighbors or an ε-ball criterion. However, because the number of samples

is typically small in the types of robot control tasks under consideration, the actual

computational effort required to find nearest neighbors and perform model selection

is quite modest. Thus, the primary advantage of constructing a local, rather than a

global, model is that cost distributions that are nonstationary with respect to their

optimal hyperparameter values can be handled more easily.

The risk-sensitive stochastic gradient descent (RSSGD) algorithm is outlined in

Algorithm 3.

The relationship of the RSSGD algorithm to VBO leads to the straightforward

insight that the local critic can also be used to perform offline optimizations, e.g.,

θ = arg min
θ∗

F̃ (θ∗, κ) = J̃θ∗ + κr̃θ∗ . (5.15)
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Algorithm 3 Risk-sensitive stochastic gradient descent

Input: Parameters : η, σ, ε, Risk factor : κ, Initial policy : θ

1. Initialize Θ = [ ],y = [ ],

2. while not converged:

(a) Sample perturbation: z ∼ N (0, σ2I)

(b) Execute θ + z, record cost Ĵθ+z

(c) Update data:

Θ,y = [Θ;θ + z], [y; Ĵθ+z]

Θloc,yloc = NearestNeighbors(Θ,y,θ, ε)

(d) Compute posterior mean and variance:

J̃θ = E[Ĵθ | Θloc,yloc]

r̃2
θ = V[Ĵθ | Θloc,yloc]

r̃2
θ+z = V[Ĵθ+z | Θloc,yloc]

(e) Update policy parameters:

∆θ := − η
r̃θ

(
Ĵθ+z − J̃θ + κ(r̃θ+z − r̃θ)

)
z

θ := θ + ∆θ

3. Return Θ,y,θ
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This is essentially the same as the VBO algorithm from the previous chapter, except

that policy selection is performed in the local neighborhood of θ. This is particularly

useful when κ is varied online to adjust risk based on the current operating context.

This simple procedure is given in Algorithm 4.

More generally, it is possible to imagine a spectrum of risk-sensitive policy search

algorithms where, on one end, are algorithms like VBO that model the entire cost

distribution and perform offline global policy selection, and, on the other end, are

algorithms like RSSGD that construct local models of the cost distribution and make

small incremental changes to the policy parameters. In between these approaches

are algorithms that interweave gradient descent an offline policy selection to, e.g.,

speed up gradient descent or quickly change risk-sensitivity. The experimental re-

sults described in Section 5.3 show how local offline policy selection can be used to

make runtime changes to a dynamic lifting policy that led to significant performance

improvements under changing optimization criteria.

Algorithm 4 Offline local policy optimization

Input: Neighbor threshold : ε, Risk factor : κ, Initial policy : θ, Data: Θ,y

1. Compute local neighborhood:

Θloc,yloc = NearestNeighbors(Θ,y,θ, ε)

2. Optimize θ locally using, e.g., SQP:

Return arg minθ F̃ (θ, κ)

5.2.4 Example

Figure 5.1 illustrates example runs of the above algorithms using the synthetic cost

distribution in Figure 5.1(a). Figure 5.1(b) shows the result of applying the RSSGD

algorithm with a risk-averse objective, κ = 2. The algorithm descends the gradient

of the upper confidence bound to a local minimum while maintaining a reasonable

local approximation of the cost distribution.
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Figure 5.1(c) shows the result of applying offline local policy optimization using the

local estimate of the cost distribution obtained during a risk-neutral gradient descent

(N = 50). By performing offline local optimization using a risk-neutral objective,

the algorithm selects a near-optimal average cost policy. Changing the value of the

risk factor in the offline optimization objective leads to selection of local risk-averse

(κ = 2) and risk-seeking (κ = −2) policies.

5.3 Experiments in Dynamic Heavy Lifting

To evaluate the performance of the RSSGD algorithm in a dynamic robot control

task, we considered the problem of using the uBot-5 to lift a 1 kg, partially-filled

laundry detergent bottle from the ground to a height of 120 cm. This problem is

challenging for several reasons. First, the bottle is heavy, so most arm trajectories

from the starting configuration to the goal will not succeed because of the limited

torque generating capabilities of the arm motors. Second, the upper body motions

act as disturbances to the LQR. Thus, violent lifting trajectories will cause the robot

to destabilize and fall. Finally, the bottle itself has significant dynamics because the

heavy liquid sloshes as the bottle moves. Since the robot had only a simple claw

gripper and I made no modifications to the bottle, the bottle moved freely in the

hand, which had a significant effect on the stabilized system.

The policy was represented as a cubic spline trajectory in the right arm joint

space with 7 open parameters to be optimized by the algorithm. The parameters

included 4 shoulder and elbow waypoint positions and 3 time parameters. The start

and end configurations were fixed. Joint velocities at the waypoints were computed

using the tangent method [24]. The initial policy was a hand-crafted smooth and

short duration motion to the goal configuration. However, with the bottle in hand,

this policy succeeded only a small fraction of the time, with most trials resulting in

a failure to lift the bottle above the shoulder.
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(a) Example latent cost distribution.

(b) Risk-averse stochastic gradient decent

(c) Different risk-sensitive policies can are selected offline using the local distribution learned during
risk-neutral gradient descent.

Figure 5.1. (a) A synthetic latent cost distribution with input-dependent variance.
(b) Risk-averse stochastic gradient descent descends the upper confidence bound of
the latent cost distribution while maintaining a reasonable approximation of the cost
distribution around the nominal parameter value. (c) Offline local optimization is
performed using different risk-sensitive objectives given the local distribution learned
during risk-neutral gradient descent.
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The cost function was defined as

J(θ) =

∫ T

0

(
x(t)>Qx(t) + cI(t)V (t)

)
dt, (5.16)

where x = [xwheel, ẋwheel, αbody, α̇body, herror]
>, I(t) and V (t) are total motor cur-

rent and voltage for all motors at time t, Q = diag([0.001, 0.001, 0.5, 0.5, 0.05]), and

c = 0.01. The components of the state vector are the wheel position and velocity,

body angle and angular velocity, and vertical error between the desired and actual

bottle position, respectively. Intuitively, this cost function encourages fast and energy

efficient solutions that do not violently perturb the LQR. In each trial, the sampling

rate was 100 Hz and T = 6 s. A trial ended when either t > T or the robot reached

the goal configuration with maintained low translational velocity (≤ 5 cm/s). The

algorithm parameter values in all experiments were η = 0.5, σ = 0.075, ε = 3.5σ, and

η/r̃θ ∈ [0.01, 0.5]. Each policy parameter range was scaled to be θi ∈ [0, 1], thus the

constant σ corresponded to different (unscaled) perturbation sizes for each dimension

depending on the total parameter range.

5.3.1 Risk-Neutral Learning

In the first experiment, we ran RSSGD with κ = 0 to perform a risk-neutral

gradient descent. The VHGP model was used to locally construct the critic and

model selection was performed using the NLOPT [40] implementation of SQP. A

total of 30 trials (less than 2.5 minutes of total experience) were performed and a

reliable, low-cost policy was learned. The robot failed to recover balance in 3 of

the 30 trials. In these cases, the emergency stop was activated and the robot was

manually reset. Figure 5.2 illustrates the reduction in cost via empirical measurements

taken at fixed intervals during learning. Interestingly, the learned policy exploits the

dynamics of the liquid in the bottle by timing the motion such that the shifting bottle

contents coordinate with the LQR controller to correct the angular displacement of
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Figure 5.2. Data collected from 10 test trials executing the initial lifting policy, the
policy after 15 episodes of learning, and the final policy after 30 episodes of learning.

the body. This dynamic interaction would be very difficult to capture in a system

model. Incidentally, this serves as a good example of the value of policy search

techniques: by virtue of ignoring the dynamics, they are in some sense insensitive

to the complexity of the dynamics [100]. Figure 5.3(a) shows an example run of the

learned policy.

5.3.2 Variable Risk Control

In the process of learning a low average-cost policy, a model of the local cost

distribution was repeatedly computed. The next experiments examined the effect of

performing offline policy selection using the estimate of the local cost distribution

around the learned policy. In particular, I considered two hypothetical changes in

operating context: when robot’s workspace is reduced, requiring that the policy have a

small footprint with high certainty, and when the battery charge is very low, requiring

that the policy uses very little energy with high certainty. Offline policy selection and

subsequent risk-averse gradient descent was performed for each case and the resulting

policies were empirically compared.
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(a)

(b)

Figure 5.3. (a) The learned risk-neutral policy exploits the dynamics of the container
to reliably perform the lifting task. (b) With no additional learning trials, a risk-averse
policy is selected offline that reliably reduces translation. The total time duration of
each of the above sequences is about 3 seconds.
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Context changes were represented by a reweighting of cost function terms. For

example, to capture the low battery charge context, the relative weight of the motor

power term in (5.17) was increased: Qen = diag([0.0005, 0.0005, 0.25, 0.25, 0.05]) and

cen = 0.1. The cost of previous trajectories was then computed using the transformed

cost function,

Jen(θ) =

∫ T

0

(
x(t)>Qenx(t) + cenI(t)V (t)

)
dt. (5.17)

The VHGP model was used to approximate the transformed cost distribution, Ĵen(θ),

around the previously learned policy parameters. SQP was used to minimize F̃en(θ, κ)

offline. Likewise, to represent the translation-averse case, the relative weight as-

signed to wheel translation was increased, Qtr = diag([0.002, 0.001, 0.5, 0.5, 0.05])

and ctr = 0.001, and the resulting transformed local model was used to minimize

F̃tr(θ, κ) offline.

Both risk-neutral (κ = 0) and risk-averse (κ = 2) offline policy selection were

performed for each case. Additionally, 5 episodes of risk-averse (κ = 2) gradient

descent was performed starting from the offline selected risk-averse policy. Each

policy was executed 5 times and the results were empirically compared. Figure 5.4(a)

shows the results from the translation aversion experiments. The risk-neutral offline

policy had statistically significantly lower average (transformed) cost (Behrens-Fisher,

p < 0.05) and lower variance (F-test, p < 0.05) than the original learned policy. The

risk-averse offline policy also has significantly lower average cost than the prior learned

policy, but its average cost was slightly (not statistically significantly) higher than

the offline risk-neutral policy. However, the offline risk-averse policy had significantly

lower variance than the risk-neutral offline policy (F-test, p < 0.05). An example run

of the offline risk-averse policy is shown in Figure 5.3(b). Finally, the policy learned

after 5 episodes of risk-averse gradient descent starting from the offline selected policy
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(a) Translation aversion
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(b) Energy aversion

Figure 5.4. Data from test runs of the prior learned policy, the offline selected risk-
neutral and risk-averse policies, and the policy after 5 episodes of risk-averse gradient
descent starting from the risk-averse offline policy. A star at the top of a column
signifies a statistically significant reduction in the mean compared with the previous
column (Behrens-Fisher, p < 0.05) and a triangle signifies a significant reduction in
the variance (F-test, p < 0.05).

led to another significant reduction in expected cost while maintaining similarly low

variance.

For the energy-averse case, the offline risk-neutral policy had no statistically signif-

icant difference in sample average or variance compared with the prior learned policy.

The risk-averse policy had slightly (not statistically significantly) higher average cost

than both the original learned policy and the offline risk-neutral policy, but it had

significantly lower variance (F-test, p < 0.05). The policy learned after 5 episodes

of risk-averse gradient descent had significantly lower average cost than the offline

risk-averse while maintaining similar variance (see Figure 5.4(b)).

5.4 Discussion

The VBO and RSSGD algorithms are connected by their shared use of a learned

heteroscedastic cost model to perform policy search. VBO uses this model to globally

select policies, whereas RSSGD uses it as a local critic to descend the gradient of a
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risk-sensitive objective. Both algorithms have the advantage of being independent

of the dynamics, dimensionality, and cost function structure, and the disadvantage

of their performance being dependent on the dimensionality of the policy parameter

space. Thus, as is the case with other parameter perturbation methods [100, 90], the

expressiveness of policy parameterizations should be balanced with their parsimony

to ensure that the number of trials needed to find a suitable policy remains small.

Policy gradient approaches that are designed to learn dynamic models, such as

PILCO [28], can also be used to capture uncertainty in the cost distribution for

different policies. Such approaches are capable of handling high-dimensional policy

spaces, however certain smoothness assumptions must be made about the system

dynamics. Furthermore, performing offline optimizations to change risk-sensitivity

would be much more computationally intensive than the approach presented here.

The very recent work of Tamar et al. [119] describes likelihood-ratio policy gradient

algorithms appropriate for different types of risk-sensitive criteria. The simulation-

based algorithm in their work is the most closely related to the RSSGD update rule.

However, rather than learning a nonparameteric cost model, their algorithm uses a

two-timescale approach to obtain incremental unbiased estimates of the cost mean

and variance. In some cases, this unbiasedness might be more important than the

sample efficiency that cost-model-based approaches can offer.

Roberts and Tedrake [100] showed that adjusting the covariance of the pertur-

bation distribution based on a signal-to-noise optimization can lead to better per-

formance. This idea is related to the covariance matrix adaptation that is done in

some cost weighted averaging methods [113]. An interesting direction for future work

would be to use the learned local model to adjust the sampling distribution by, e.g.,

scaling the perturbation covariance by the optimized length-scale hyperparameters.

In this way, the perturbation magnitude for each parameter could be scaled by the

inferred sensitivity of the cost to changes in that parameter. Methods for using gra-
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dient estimates from the local critic to update the policy parameters or, conversely,

using gradient observations to update the critic could also be explored.

Local offline optimization can be performed by applying the VBO algorithm with

constraints on the parameter search space. This leads to the possibility to interweave

gradient descent with local offline policy selection to select local greedy polices to

speed up gradient descent or quickly change risk-sensitivity. This approach was used

in the dynamic lifting experiments with the uBot-5. First, a policy was learned that

exploited the system dynamics to produce an efficient and reliable lifting strategy.

Then, starting from this learned policy, new local cost models were fit and used to

select translation-averse and energy-averse policies. It is interesting that this kind of

flexibility is possible after so few trials, especially given the generality of the opti-

mization procedure. However, a notable limitation of the implementation described

is that generalization to different objects or lifting scenarios would require separate

optimizations. The extent to which more sophisticated closed-loop or model-based

policy representations could support generalization is an interesting open question.
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CHAPTER 6

POSTURAL CONTROL AND RECOVERY WITH THE
UBOT-5

6.1 Introduction

In the previous two chapters, new tools for performing efficient risk-sensitive

stochastic optimization were presented and applied to various policy search prob-

lems. In particular, two of these experiments involved the uBot-5 mobile manipula-

tor (Section 3.3.1). As one of the primary experimental platforms in the Laboratory

for Perceptual Robotics, a long-term research goal is to develop a complete postural

stability control system that increases the robustness and deployability of the robot

into unconstrained human environments. In this chapter, I describe how risk-sensitive

optimization has played a role in the development of postural stability and recovery

controllers that support this general goal.

6.2 Postural Modes and Dynamic Transition Events

The uBot is a versatile research platform that has supported a variety of ex-

periments in mobile manipulation [124, 52, 62, 53, 54] and human-robot interac-

tion [27, 89, 42, 140]. As a mid-sized humanoid that balances on two wheels, it is

a unique platform for studying the advantages and limitations of dynamically stable

mobile manipulators. In particular, dynamic stability leads to a coupling of effectors

that can, for example, be exploited to increase pushing and pulling forces [124, 48]

or, as we saw in Chapter 3, increase stabilization performance after impacts. Another
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Figure 6.1. Examples illustrating the five basic postures of the uBot-5.

interesting question is the extent to which the dynamic response of balancing systems

can be used to measure manipulation forces [74].

When the uBot is not balancing in an upright configuration, it can be in one of

several statically stable poses (Figure 6.1). Due to arm redundancy, each postural

mode actually contains many feasible configurations, so the configurations shown in

Figure 6.1 should be viewed as representative examples. Simple quasistatic controllers

for transitioning between the statically stable postures, and simple gaits that arise out

of sequences of these transitions, are described in our prior work [63]. Essentially, by

moving sufficiently slowly and ensuring that the robot’s center of mass stays within

the ground support polygon, reliable transitions between postures can be performed.

However, transitions to and from the balancing configuration cannot be handled

in a quasistatic way. This is not to imply that simple controllers are precluded
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as a result. In disturbance-free environments, simply moving the arms to specific

configurations and turning off the LQR controller will produce reliable transitions to

the 4-point posture. Likewise, transitioning to the balancing posture from a 4-point

configuration can be achieved by doing a “push up” [63] until the robot’s body angle is

near vertical and then activating the LQR. However, controlling dynamic transitions

and maintaining stability in the face of environmental perturbations is more difficult.

For example, consider the task of maintaining stability in the balancing posture

under unknown perturbations. If we define the balancing posture as the set of states

that can be stabilized by the LQR, i.e., all states in its basin of attraction, then one

can imagine dynamic transition events where external disturbances cause the system

to leave the set of balancing states. In this case, control actions must be taken to

either return the system to the set of balancing states, or to transition to another

stable posture in a way that protects the hardware and supports subsequent recovery.

The experiments described in Chapters 3 and 4 considered the effects of combining

learned open-loop arm motions with the LQR response after impact perturbations.

In particular, the risk-averse and risk-neutral policies learned using VBO significantly

increased the robot’s ability to recover from very large impact forces roughly equiva-

lent to the robot’s total mass in earth gravity. At these large impact magnitudes, the

LQR consistently fails to recover. Thus, the arm responses help return the robot from

an unstable state to the set of balancing states. Another way to say this is that the

arm motions increase the basin of attraction for the balancing posture. A graphical

example of this obtained from a simple simulated uBot-5 is shown in Figure 6.2.

When balance recovery is not possible, such as after a very large impact perturba-

tion, actions must be taken to safely bring the system to rest. Transitions directly to

a prone posture typically produce very large body accelerations upon ground impact,

so these transitions are to be avoided. Likewise, falling on top of the arms in an

uncontrolled way would likely damage the hardware and possibly produce electrical
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(a) LQR responses of a simulated uBot after various impact magnitudes. At the
largest impact magnitude considered, the robot fails to stabilize and return to the
fixed point at the origin.
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(b) Optimized arm motions increase the basin of attraction.

Figure 6.2. Example phase plots from a simple 2D dynamic simulation of the uBot-5.
Impulse forces of increasing magnitude were generated and symmetric arm responses
for the largest impact were learned via a direct trajectory optimization.
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shorts due to the robot’s open chassis. Thus, bracing strategies that facilitate safe

transitions to the 4-point posture are considered in the next section.

6.3 Bracing for Falls

In the face of very large impact perturbations, the uBot must perform a bracing

behavior to transition to the statically stable 4-point posture in a way that minimizes

body acceleration and hardware strain. Because the stakes are high in this case (i.e.,

there is a significant chance of hardware damage), the robot must aim to achieve

good performance with high certainty. In other words, the system should optimize

its bracing strategy with respect to a risk-averse criterion.

To develop the fall bracing controller, controlled impact perturbations to the torso

were generated using the same pendulum apparatus from the arm recovery experi-

ments (Chapter 3). The drop height was varied randomly in a small range, so the

momentum prior to impact was approximately 14 ± 2 Ns. This is a significantly

larger perturbation than was considered in the previous experiments and under no

circumstances has the robot been able to recover balance from these large impacts.

The class of feasible bracing policies was strongly constrained by the physical

limitations of the robot. The time between impact onset and arm endpoint contact

with the ground was approximately 1/4 second. Given this short time duration,

arm initial conditions, and the robot’s actuator velocity limitations, the range of

configurations of the arms for endpoint ground contact was very limited. Additionally,

torque had to be minimized for a subset of the arm joints that are driven with

rubber belts, since these can slip and fail to absorb the impact. The problem of

selecting arm configurations for bracing was therefore effectively solved by the physical

constraints. However, the optimal arm stiffnesses remained unknown. Thus, the

bracing problem involved selecting the joint stiffnesses for ground impact given the

bracing arm configuration that satisfied the constraints of the system.
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The joint stiffnesses were governed by a parameter θ ∈ [0, 1], where the value of θ

was linearly related to the proportional gains of the low-level joint PD controllers and

the maximum joint motor PWM signal (effectively a maximum torque threshold).

The stiffness parameter was optimized with respect to the cost function,

J(θ) = h(x(T )) +

∫ T

0

(0.1α̈(t)2 + 5I(t)V (t))dt, (6.1)

where T = 2.0 sec, α̈(t) is the body acceleration at time t, and I(t) and V (t) are

the motor currents and voltages for all arm joints, respectively. If hardware was

damaged as a result of the bracing trial, h(x(T )) = 10 and h(x(T )) = 0 otherwise.

All observed hardware failures were broken steel pulley cables at the elbow joints.

In principle, this failure could be detected by the robot with a simple elbow flexion

routine, but for simplicity the presence or absence of hardware failures was manually

identified after each trial. Risk-averse (κ = 2) gradient descent using the RSSGD

algorithm was performed with η = 0.7, σ = 0.05, ε = 4σ, and η/r̃θ ∈ [0.01, 0.5].

Although the problem is a simple 1-dimensional optimization task, the high relative

noise magnitude throughout the search space makes it challenging to perform gradient

descent efficiently.

Snapshots of the learning sequence are shown in Figure 6.3. Initially, the robot

started with a low-stiffness policy and gradually adjusted the policy to increase the

bracing stiffness. Although high-stiffness policies have low average cost since they

tend to produce lower body accelerations, they are more likely to causing hardware

damage due to increased strain on the arm joints. Thus, high-stiffness policies have

high risk and the risk-averse optimization settled on a slightly higher expected cost,

but lower risk policy. I collected 52 additional samples of randomly selected policies

to verify that the learned policy is near-optimal for the k = 2 criterion (Figure 6.4).

An example run of the resulting bracing policy is shown in Figure 6.5.
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Figure 6.3. Snapshots of the learning sequence for risk-averse bracing. From left to
right, N = 5, 15, 35, and 45. The vertical blue line indicates the nominal policy and
the red data point indicates a hardware failure.

A complete bracing and recovery sequence is shown in Figure 6.6, where the brac-

ing behavior is used to respond to a kicking perturbation and the push-up controller

is used to return to the balancing configuration.

6.4 Recovery Policy Switching

The development of whole-body balance recovery and bracing policies raises an

obvious question: when should each of these policies be used? Ideally, the robot

should always try to recover balance except in those cases where it is unable to do so.

However, because of sensor limitations and the non-negligible performance variation

of both policies, this line is not clearly defined. Thus, the policy for switching between

bracing and recovery will depend strongly on the risk-sensitivity of the system.

To illustrate this point, I performed a set of impact perturbation experiments,

where the robot selected between the learned (risk-averse) arm recovery policy or the

bracing policy based on inferred impact magnitude. Impacts were generated randomly

and ranged from moderate (arm recovery succeeds) to very large (arm recovery fails).

The robot sensed the impact magnitude using a simple low-pass filter on gyroscope

data. The filtered body angular velocity was computed as α̇filt
k = (1− β)α̇filt

k−1 + βα̇k,

where β = 0.3. If at time step k, the absolute filtered body angular velocity decreased,

|α̇filt
k−1| > |α̇filt

k |, and had magnitude greater than 1.0 rad/s, an impact of magnitude
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Figure 6.4. The cost distribution for bracing fit using 97 data points: 45 from the
learning sequence (bold) and 52 from randomly selected policies. The vertical blue
line indicates the final policy after 45 episodes of risk-averse (κ = 2) gradient descent.
The red points indicate hardware failures.

Figure 6.5. Bracing policy execution after a large impact perturbation. Total du-
ration of the above sequence is 0.7 seconds.
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Figure 6.6. The recovery sequence executed in response to a human kicking the
robot. The uBot detects the large impact and initiates the bracing controller. When
the robot comes to rest, the arms are repositioned and a closed-loop push-up con-
troller developed in our prior work [63] is used to return the robot to the near vertical
position. From this position, the LQR controller is engaged and the arms are reposi-
tioned.
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I = |α̇filt
k−1| was inferred. The inferred magnitudes ranged from 1.24 to 1.97 in the

trials performed.

The probability of selecting the bracing policy was defined to be

p(brace | I, θ) =
1

1 + e−50(I−θ) , (6.2)

where the parameter θ effectively defines the threshold impact magnitude for bracing.

If θ is set to a low value, the robot will brace after most impacts. Alternatively, if θ

is set to a high value, the robot will almost always try to recover balance, which may

or may not succeed depending on the particular impact. The cost was computed for

each trial as,

J(θ) = h(x(T )) +

∫ T

0

(0.005α̈(t)2 + 5I(t)V (t))dt, (6.3)

where T = 3.5 sec and h(x(T )) captured the cost of having to perform a subsequent

push-up: h(x(T ) = 10 if the robot braced or failed to recover and h(x(T )) = 0 other-

wise. Under this cost function, balance recovery events using the learned arm motions

yielded the lowest average cost because they produced low body accelerations, used

little energy, and did not require a subsequent push-up to recover balance. Bracing

had comparatively higher cost because significant energy was used by the arms to

reduce the body acceleration when coming into contact with the ground. Failing to

recover yielded the highest average cost because very high body accelerations were

recorded and, like the bracing maneuver, a push-up was required to return to the

balancing configuration. Note that once balance recovery was selected, successful

bracing was no longer possible due to arm actuator velocity limitations (although

failures to recover were reliably detected and bracing was attempted in each case).

Figure 6.7 shows data collected from 50 trials where θ was selected uniformly

at random. The VHGP model was fit to the data and confidence bound selection
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Figure 6.7. Data collected in policy switching experiments are used to construct
a cost model and perform subsequent risk-sensitive selection. As κ is increased, the
robot becomes increasingly risk-averse by bracing for most impacts. As κ is decreased,
the robot becomes increasingly risk-seeking by attempting to recover balance for most
impacts.

was performed using a range of risk factors. The results correspond strongly with

intuition. When κ = 2, the robot tends toward risk-aversion by bracing for even small

impacts. This strategy is quite predictable, but it is very conservative since bracing

is performed in some cases where it would otherwise be able to recover balance. On

the other hand, when κ = −0.5 the robot attempts arm recovery in most cases. This

leads to stabilization in all cases where stabilization is possible, but it also produces

dangerous failures when the robot is unable to recover balance. The risk-neutral

policy (κ = 0) is near what appears to be the recovery limit.

In this case, the switching threshold was positively related to risk: increasing κ

decreased θ (nonlinearly), and vice versa. Thus, the learned cost model is used to

reparameterize the switching behavior from a somewhat obscure threshold on the

magnitude of body angular velocity, θ, to a risk factor, κ, that specifies the system’s

sensitivity to the standard deviation of a known cost function. In this simple example,
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the positive relationship between these quantities could have probably been guessed

by a programmer with sufficient experience with the robot under these experimental

conditions. But the mapping between risk and the parameters of the arm recovery

or dynamic lifting policies learned in Chapters 4 and 5 would have been much more

difficult to predict.

6.5 Discussion

The ability to perform safe, reliable bracing maneuvers and use arm motions to

help stabilize after large impact perturbations significantly improves the robustness

and deployability of the uBot-5. The approach taken to develop these behaviors in

this work was to optimize the responses of parameterized policies to particular im-

pact disturbances. This is, of course, not the only, or even the most general, way to

solve these problems. For example, a dynamic model of the system could have been

learned via system identification and model-based techniques could have been applied

to produce arm motions that, e.g., attempt to control the body angular momentum

in a particular way. However, it is interesting that these rather complicated dynamic

control tasks can be solved using a very general process of formulating and solving

stochastic optimization problems. From a practical perspective, it is also interesting

that a small set of learned policies can be used to respond to a wide range of im-

pact perturbations and that the learned solutions can be adapted to reflect different

sensitivities toward risk.

Nevertheless, the bracing and recovery controllers developed in this work are nec-

essarily limited. In particular, they are designed to recover from unpredicted rear

impact perturbation on flat terrain. Extending this set of controllers to enable the

robot to respond to front impacts would be straightforward, but the behaviors would

likely differ qualitatively because the arm initial conditions are not symmetric across

the coronal plane. Addressing other common types of perturbations, such as tripping
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and slipping, is an interesting direction for future work. The bracing strategy devel-

oped in this work would likely translate to these cases, however whole-body balance

recovery strategies may be more difficult since the perturbation directly affects the

motion of the wheels. Preliminary experiments suggest that maintaining stability us-

ing only the arms is probably infeasible, so in these cases bracing may be frequently

used.

Policies that directly adjust the impedance of the robot will be useful to respond

to long-duration or anticipated contact perturbations. It is likely that anticipatory ac-

tions, such as leaning into an impact, will improve recovery performance significantly.

Another interesting possibility is exploiting noncoplanar environmental surfaces for

bracing. This problem would likely require some knowledge of the robot dynamics to

compute suitable bracing configurations for a given surface. Risk sensitivity might

play an interesting role in this problem since, e.g., strategies will depend on uncertain

estimates of state, surface orientation, and friction coefficients. Developing methods

for autonomously setting the system’s runtime risk sensitivity for different recovery

scenarios is an important direction for future work.
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CHAPTER 7

CONCLUSIONS AND FUTURE WORK

The goal of this thesis was to develop new tools for performing risk-sensitive

optimization and evaluate their utility in a range of dynamic robot control tasks.

In pursuit of this goal, two new stochastic optimization algorithms were derived.

The first algorithm, called Variational Bayesian Optimization (VBO), is an exten-

sion of Bayesian optimization methods that can be used to perform global policy

search with respect to a variety of risk-sensitive optimization criteria. The second

algorithm, called Risk-Sensitive Stochastic Gradient Descent (RSSGD), is related to

VBO through its use of a learned cost model, but instead of performing global pol-

icy selection, RSSGD uses the cost model as a local critic to perform risk-sensitive

gradient descent.

Several experiments with the uBot-5 were described in which dynamic stability,

recovery, and manipulation controllers were learned using the algorithms presented in

this thesis. In addition to providing examples of efficiently learned dynamic behav-

iors, these experiments highlighted the important role that risk can play in dynamic

robot control. However, the algorithms and experiments presented in this thesis are

necessarily limited and there is much that remains for future work.

7.1 Future Work

There are several exciting and promising opportunities for future work both ex-

tending the methods presented in this thesis, and developing new kinds of risk-

sensitive policy search algorithms. The VBO and RSSGD algorithms are general
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risk-sensitive stochastic optimization methods that can be applied to the problem

of policy search. However, more domain-driven policy search algorithms are also

conceivable. For example, Mihatsch and Neuneier’s risk-sensitive TD approach [76]

could potentially be applied to build new types of actor-critic algorithms that use

biased value function estimates to perform local risk-sensitive policy search. Such

approaches would likely be able to handle larger dimensional policy spaces, but the

ability to rapidly change risk-sensitivity would be limited. The method by which risk-

sensitivity would be specified in this case (effectively a ratio of step size parameters) is

perhaps not as intuitive as the confidence bound criteria considered in this work, but

the possibility of extending methods such as natural actor-critic to the risk-sensitive

case is very exciting.

One straightforward way to extend the VBO algorithm would be to consider differ-

ent policy selection criteria. In particular, multi-step methods that select a sequence

of n policy parameters could be valuable in systems with fixed experimental budgets.

Osborne et al. [88, 30] have proposed a multi-step criterion in the standard Bayesian

optimization setting that has produced promising results. Other risk-sensitive global

optimization algorithms could also be conceived by using other methods to build the

heteroscedastic cost model [125, 108, 45, 138]. It would be interesting to see if different

properties arise that make certain methods more appropriate for particular problem

domains. Methods for capturing multimodality of the cost distribution would also be

interesting to consider, especially in domains where unobservable differences in initial

conditions can lead to qualitatively different outcomes.

The way in which the local cost model was used as a critic in the RSSGD algo-

rithm was somewhat limited. There are several possibilities for improvements. For

example, some work has shown that adjusting the covariance of the perturbation dis-

tribution while learning can produce better performance [100]. This idea is related to

the covariance matrix adaptation that is done in some cost weighted averaging meth-
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ods [113]. An interesting direction for future work would be to use the learned local

model to adjust the sampling distribution by, e.g., scaling the perturbation covariance

by the optimized length-scale hyperparameters of the VHGP model. In this way, pa-

rameters would be perturbed based on the inferred relative sensitivity of the cost to

changes in each parameter value. Methods for using gradient estimates from the local

critic to update the policy parameters or, conversely, using gradient observations to

update the critic could also be explored.

Two open problems that were not explicitly addressed in this thesis are methods

for setting the risk factor, κ, and selecting the policy representation, πθ. These

are, of course, extremely important problems that strongly effect the outcome of the

optimization. Methods for selecting κ are likely to be context-specific, where the

system’s risk level might depend on fast-changing quantities such as battery charge,

motor temperature, the presence of dangerous obstacles, etc. The VBO algorithm

is can act on changes in risk sensitivity, but equivalently responsive methods for

specifying risk factors based on state are also needed. In particular, it will be necessary

to devise ways to map features of the robot’s state and environment to a common

cost currency to determine appropriate dispositions toward risk. In natural systems,

mechanisms for doing this clearly exist, but the rules by which they operate are often

elusive [10].

The policy search experiments described in this thesis have involved optimization

of simple open-loop policies. The reason for this twofold. First, it is often easy for the

robot programmer to predict the types of motions that are likely to succeed and hence

identify suitable trajectory-based representations, such as cubic splines. The second

reason is that closed-loop representations can often be difficult to apply successfully

in policy search, especially in weakly-stable systems, because small changes in policy

parameter values can give way to large changes in cost for some regions of parameter

space. This problem was investigated in detail by Roberts et al. [98]. It would be
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interesting to see if global methods like VBO fair better than gradient-based methods

in these cases, although implementations that can handle nonstationarity in the cost

distribution would likely be needed. A very interesting open problem is the automatic

identification of suitable policy representations based on demonstrated or planned

solutions. Dimensionality reduction techniques developed by the machine learning

community may play a significant role in solving this problem.

7.2 Conclusions

It is well known that risk plays a central role in a wide variety of decision processes,

from portfolio investments [66, 129, 86] to food source selection [10]. Recent studies

suggest that risk-sensitivity may also be a fundamental component of human motor

control [20, 83, 139]. However, unlike the decision sciences, work in stochastic optimal

control and reinforcement learning has placed less emphasis on risk, focusing instead

on developing methods for maximizing average performance.

In this thesis, I presented new approaches for performing efficient risk-sensitive

optimization of noisy cost functions. These algorithms are quite general in that

they assume little about the structure of the optimization problem. When applied

to policy search, they are capable of handling high-dimensional continuous state and

action spaces with unknown dynamics, significant stochasticity, and non-additive cost

functions. However, as a consequence of this generality, these approaches require

low-dimensional policy representations and careful consideration of the properties of

the cost distribution. Nevertheless, these methods are relevant to state-of-the-art

control development in robotics because low-dimensional policies can exist for even

very challenging control problems.

I evaluated the algorithms in several dynamic control tasks with the uBot-5. These

experiments involved learning rapid arm responses for stabilizing after large impact

perturbations, learning dynamic heavy-lifting strategies while balancing, and devel-
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oping safe and reliable fall bracing behaviors to respond to destabilizing impacts.

In addition to serving as unique contributions to the robot control literature, these

results provide initial evidence that variable risk control may be important for devel-

oping high-performance and reliable robot systems. However, these results constitute

only a very small step toward the greater goal of developing general methods for

autonomous dynamic behavior generation in robot systems.

The role that risk-sensitive optimization will ultimately play in the development

of robots capable of control feats like those we observe in nature is still unclear. At

this point, there is good reason to suspect that risk will be important, but there is

much work that lies ahead. I hope that the tools and experiments described in this

thesis offer some value to those researchers that will inevitably develop new insights

that lead us closer to the goal toward which we strive.
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