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Abstract

This paper presents a learning framework that enables a robot
to learn comprehensive policies autonomously from a series
of incrementally more challenging tasks designed by a hu-
man teacher. Psychologists have shown that human infants
rapidly acquire general strategies and then extend that behav-
ior with contingencies for new situations. This strategy al-
lows an infant to quickly acquire new behavior and then to
refine it over time. The psychology literature calls such com-
pensatory action prospective behavior and it has been identi-
fied as an important problem in robotics as well. In this pa-
per, we provide an algorithm for learning prospective behav-
ior to accommodate special-purpose situations that can oc-
cur when a general-purpose schema is applied to challenging
new cases. The algorithm permits a robot to address com-
plex tasks incrementally while reusing existing behavior as
much as possible. First, we motivate prospective behavior
in human infants and in common robotic tasks. We intro-
duce an algorithm that searches for places in a schema where
compensatory actions can effectively avoid predictable future
errors. The algorithm is evaluated on a simple grid-world
navigation problem. Results show that learning performance
improves significantly over an equivalent flat learning formu-
lation by re-using knowledge as appropriate and extending
behavior only when necessary. We conclude with a discus-
sion of where prospective repair of general-purpose behavior
can play important roles in the development of behavior for
effective human-robot interaction.

Introduction
Human behavior is organized hierarchically and extended
over a lifetime of experience with a variety of tasks. This
is an open-ended process where the infant extends models
and control knowledge incrementally by engaging learning
situations near the frontier of his or her abilities. As learning
proceeds, the frontier advances into more complex domains
and precipitates increasingly expert behavior. This perspec-
tive on human development can be successfully applied to
robotics as well.

In previous work, we formulated methods for intrinsically
motivated learning that creates hierarchical behavior repre-
sented as schema—general plans for an entire class of tasks
(Hart, Sen, and Grupen 2008b; 2008a). We demonstrated
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that a bimanual robot learns a hierarchy of basic manual
skills—searching, grasping, and inspecting objects—by se-
quencing primitive actions (Hart, Sen, and Grupen 2008b)
in search of intrinsic rewards. Schema are acquired initially
in a simple learning context devised by the human teacher to
make rewards conspicuous. In subsequent stages of develop-
ment, the robot is challenged with new situations that cause
the schema to be extended to make the behavior strictly more
comprehensive.

This paper addresses the schema extension process that
learns to accommodate new situations where the schema
needs to be extended. We propose an algorithm that searches
for the state information necessary to recognize the new situ-
ation and writes a contingency handler for the new situation
using the subgoals that define the schema.

Schema Learning
The use of the term “schema” can be traced back to 1781,
where philosopher Immanuel Kant introduced it as a way
to map concepts to percepts over categories of objects in
order to guard against “thoughts without contents” (Kant
1781). This allowed Kant to talk about mental representa-
tion of concepts that are grounded in sensations that would
lend support to reasoning and intuition. In the 1950s, Piaget
used schema to refer to sensorimotor skills that infants use
to explore their environments (Piaget 1952). His schema is
a mental construction refined through a series of stages by
the processes of assimilation of new experience and accom-
modation of skills to describe interactions with the environ-
ment.

As computational devices, schematic representations
have been presented in architectures using planning meth-
ods (Lyons 1986), empirical cause-and-effect methods
(Drescher 1991), reactive behavior methods (Brooks 1991;
Arkin 1998) and rule-based methods (Nilsson 1994). In (Ar-
bib 1995), Robot Schema (RS), a formal language for de-
signing robot controllers has been proposed by Arbib and
Lyons, where perceptual and motor schemas are combined
into coordinated control programs.

This work is based on a schematic computational frame-
work that takes a control theoretic approach to schema learn-
ing (Huber 2000; Hart, Sen, and Grupen 2008b). In this ap-
proach, a schema is represented as a collection of sensory
and motor resources, and previously learned skills. Through



exploration, the robot discovers which combinations of sen-
sorimotor resources lead to reward. Piaget’s notion of ac-
commodation and assimilation is realized in this framework
where existing schemas are factored into declarative and
procedural components, respectively. Declarative structure
captures the generalizable sequences of sub-goals that de-
scribe the skill and procedural knowledge describes how an
existing schematic structure can apply to different run-time
contexts. This has been demonstrated in several subsequent
stages of development following the acquisition of a basic
search-and-grab behavior. The separation of declarative and
procedural knowledge enabled the robot to quickly adapt to
the new situations by preserving the basic search-and-grab
plan and incorporating handedness, object scale, and shape
contingencies and by engaging gestural actions to recruit hu-
man assistance. However, the framework does not handle
situations where both declarative structure and procedural
knowledge of the schema needs to extended simultaneously.
In the balance of this paper, a prospective behavior algo-
rithm is introduced to address this kind of adaptation.

Prospective Behavior
In general, the repair of a schema in response to a new sit-
uation can require a larger temporal scope than indicated
solely by the actions that fail. The error can be associated
with events that are not monitored by the schema and that
occurred at some indefinite time in the past. Prospective
behavior is an important component of computational ap-
proaches to transfer and generalization. It is a term, coined
in the psychology literature, to describe a process in which
a human infant learns to predict how a strategy might fail in
the future and generates alternative strategies to accommo-
date the new situation.

McCarty et al. studied the initial reach to a spoon laden
with applesauce and presented to infants in left and right
orientations (McCarty, Clifton, and Collard 1999). The de-
velopmental trajectory observed is summarized in Figure 1.
Initial policies are biased toward dominant hand strategies
that work well when the spoon is oriented with its handle
to the dominant side. However, when it is not, the domi-
nant hand strategy fails. Variations in the applesauce reward
distinguish important categories in this process—dominant-
side and non-dominant-side presentations of the spoon. One
hypothesis holds that this process involves a search for per-
ceptual features that distinguish classes of behavioral util-
ity. When this happens, new perceptual features have been
learned that were not present in the original representation.
They have been selected from a possibly infinite set of al-
ternatives because they form a valuable distinction in the
stream of percepts—valued for their ability to increase the
reward derived from the infant’s interaction with the task.

One may view this process as one in which properties and
constraints imposed by the task are incorporated into a pol-
icy incrementally starting with the latter (distal) actions and
gradually propagating back through the action sequence to
early (proximal) actions.

There are parallels to the “pick-and-place” task often
studied in robotics (Jones and Lozanzo-Perez 1990). Con-
sider a general purpose pick-and-place schema that acquires

an object (the “pick” goal) and delivers it to a desired posi-
tion and orientation (the “place” goal). A successful grasp
of the object can depend on characteristics of the place goal.
For instance, if the object is a cylindrical peg that is to be
placed at the bottom of a cylindrical hole, then the mating
surfaces between the peg and the hole must be left unob-
structed for the insertion to succeed. The decision about
how to grasp the peg must respect this constraint. Now con-
sider a robot with lots of prior experience with pick-and-
place tasks, but none directly focused on the constraints sur-
rounding peg-in-hole insertions. An arbitrary grasp on the
peg will likely fail during the place subtask and the reason
for this failure is likely inexplicable in the existing pick-and-
place framework.

Traditionally, this problem is formulated as a planning
problem. In (Lozano-Perez 1981; Jones and Lozanzo-Perez
1990), a back-chaining algorithm is used that searches back-
ward in time from the desired final state until the initial state
is found. This approach requires complete knowledge of the
task to begin but does not speak to where that knowledge
came from. It is subject to uncertainty introduced by seem-
ingly small inaccuracies in backward chaining predictions
compounded over multi-step sequences. Moreover, depend-
ing on how task knowledge is represented, this strategy may
not share common background (pick-and-place) knowledge
with other related tasks.

This is in stark contrast to how the human child would
approach this problem. Extrapolating from the spoon and
applesauce experiment, we expect that the infant will em-
ploy a general-purpose strategy and demonstrate biases that
apply generally to the entire class of such tasks. Upon fail-
ing with this approach, and only upon failing, will the child
search for an explanation for the failure, starting at the peg
insertion and backing up to the transport phase, to the grasp,
and ultimately to the visual inspection of the peg and hole.
Somewhere in this sequence is the reason that the general-
purpose strategy doesn’t work in this context. Once found,
the infant will begin experimenting with corrective actions.
Throughout this process, the infant’s search for a solution
revolves around modifying existing behavior rather than at-
tempting to learn a new strategy from scratch.

The work described herein extends our previous work
and presents a prospective behavior repair algorithm for au-
tonomous agents to rapidly accommodate a novel task by
applying existing behavior. The main idea of the algorithm
is the following: upon failure due to a new context, the robot
attempts to fix the problem via local adjustments whose
scope expands until a compensatory subtask is learned to
handle the exception. Now, the general-purpose schema is
extended with a call for the compensatory subtask when the
triggering percept is present. The result is a new, integrated,
and more comprehensive schema that incorporates prospec-
tive behavior for accommodating the new context.

In the rest of the paper, we will describe an algorithm for
discovering prospective behavior motivated by the behavior
of infant learning. Next, we introduce a simple navigation
task with multiple “door” contexts that introduce prospective
errors. We attempt to show that a general-purpose naviga-
tion policy in the grid world can be extended with auxiliary
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Figure 1: Prospective Behavior revealed in the Applesauce Experiment.

percepts and compensatory actions to solve the problem ef-
ficiently. We evaluate the proposed algorithm by comparing
its performance to that of a “flat” learning problem in which
all the required state information is provided a priori.

Related Work
Previous work by Wheeler et al. replicated McCarty’s apple-
sauce experiment on a bimanual robot platform (Wheeler,
Fagg, and Grupen 2002). The robot was first presented with
an easier task where the object was always offered in the
same orientation. This allowed the robot to quickly learn
a dominant hand strategy. Later, the robot was challenged
with a more difficult task where the object was presented in
random orientations such that if the robot initiated the grasp
behavior with the wrong hand, a compensatory strategy was
required. Although learning occurred in multiple stages to
exhibit a learning progression similar to that reported in the
human infant study, Wheeler’s learning representation was
flat. It did not exploit previously learned skills or sequences
of actions for the more challenging tasks.

This work is similar to work by Cohen et al. (Cohen,
Chang, and Morrison 2007) on hierarchical learning on the
aspect that both algorithms autonomously discovers hidden
state information that is missing from the current state repre-
sentation. Cohen uses an entropy approach and we use a de-
cision tree algorithm. Our approach takes another step that
actively searches for an appropriate section of the program
where the existing policy can be repaired because fixing the
problem where it occurs may not yield a solution. Then,
a new sub-goal is created such that a prospective behavior
can be learned. This aspect of hierarchical learning was not
demonstrated in Cohen’s work.

Konidaris’s work on agent-space options (Konidaris and
Barto 2007) studies similar problems in skill transfer where
the agent spaces become non-Markovian when transfered to
new contexts. To resolve the issue, a problem-space was in-
troduced that maintains the Markov property. In this work, a

similar state factorization technique is employed for a differ-
ent purpose: to reduce redundant states such that improve-
ment on learning performance can be achieved.

The Navigation Problem
We introduce the prospective repair algorithm by way od a
robot navigation task. Figure 2 shows a grid world in which
a simulated robot navigates through hallways, rooms, doors,
and buttons that actuate the doors. The circle is the robot’s
starting position and the triangle represents the goal. The
robot’s task is to learn a path to the goal, given that a random
subset of the doors can be closed at the beginning of each
training episode. The buttons for opening doors are scattered
in different rooms of the map. The robot has to visit the
appropriate buttons to open doors that blocks its known path
to the goal.

The robot can move left, right, up, or down. At each grid
location, the robot can observe its (x, y) location and three
door status indicator bits that represent the status of three,
randomly chosen doors out of the six in the map. However,
the correspondence between the doors and the indicator bits
are not directly observable. The initial status of the doors is
randomly assigned at the beginning of each trial. We will
evaluate two solutions to this problem. The first is a flat
learning approach informed by the full state description, and
the second is the proposed prospective repair approach using
a sequence of reusable policies in (x, y) state with prospec-
tive error suppression triggered by the door status indicators.

A Flat Q-learning Approach
A flat learning approach to the problem is formulated where
all the required state information is provided a priori and the
task is presented to the robot in a single learning stage. This
is in contrast to the multi-stage learning approach that is pre-
sented next. This grid world navigation task is formulated
as a standard reinforcement learning problem using the ε-
greedy Q-learning algorithm (Sutton and Barto 1998) where
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Figure 2: A 30 × 30 grid-world navigation problem. The
status of a door is toggled when the robot visits the grid lo-
cation where the corresponding button is located.

the robot is rewarded for finding an optimal path to the goal.
The state, s, for this formulation includes the (x, y) loca-
tion of the robot and the 3 observable door status indicator
bits. The 4 actions: move up, down, left and right, form the
robot’s the action set A. A simple reward model is applied:
the robot receives positive 1 unit of reward for achieving the
goal and a −0.01 unit of reward for every step it takes.

In this formulation, the robot receives maximum cumula-
tive reward by taking the fewest number of steps for reach-
ing the goal. For every state s the robot encounters and ev-
ery action a the robot can take from that state, an expected
future reward value, or Q-value is estimated. In the begin-
ning, this value is initialized randomly for every state-action
pair < s, a >. Through trial-and-error exploration, the Q-
learning algorithm enables the robot to incrementally update
the Q-value for every < s, a > it encounters. With sufficient
exploration, the Q-value for all < s, a > is expected to con-
verge, thus allowing the robot to extract optimal policies for
navigating to the goal under all contexts. For these exper-
iments, we define an episode to be one complete traversal
by the robot from start position to goal position. Early on,
it may take several thousand actions to get to the goal. A
trial is defined as one complete learning experiment (until
asymptotic performance). Depending on the problem de-
sign, it may take consist of several thousand or tens of thou-
sands of episodes before a trial concludes.

The result from the flat learning experiment is presented
in Figure 3. In the early episodes, the cumulative rewards are
large negative numbers because the robot starts out with no
prior knowledge about the world, and randomly explores the
map with many extraneous steps, building up large negative
reward before finally reaching the goal. Slowly, as expected
future reward for each state-action pair improves, the num-
ber of steps it takes for the robot to reach the goal decreases.
As a result, the cumulative reward rises, until it converges at
around 30, 000 episodes. This experiment used a discount
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Figure 3: Average cumulative reward over 100 trials for us-
ing a flat learning approach

factor, γ = 1.0, learning rate α = 0.1, and the ε-greedy
parameter is set to ε = 0.1.

The flat learning approach learns to solve this problem
in 30, 000 episodes to learn a policy with contingencies for
random door configurations. This is a lot of training for
an on-line learner, but further reflection on the experiment
yields insights that can be used to reformulate the problem.
State s includes the (x, y) location and 3 randomly selected
door status bits at each cell in the map. However, in many
states, the part of s concerning door status is uninformative
and optimal decisions can be determined from (x, y) alone.
Therefore, performance in the flat learning problem is often
compromised by too much state that is encoded inefficiently.
In these states, a more general strategy can be applied and
much less training is required. To overcome this problem,
the hierarchical prospective repair approach is proposed.

A Prospective Repair Approach
In this section, the proposed prospective repair approach is
presented in the context of the multi-door navigation prob-
lem. In contrast to the flat-learning approach, the original
task is decomposed into a series of problems that can be
presented to the robot in an incremental manner. Initially,
the robot is presented with the simplest task. Later, it is
challenged with more difficult contexts. In the navigation
problem, the simplest task is to find the optimal path for
reaching the goal when all doors are open. After this pol-
icy is acquired, the robot is challenged by closing a specific
door until the robot has acquired a policy for handling this
case. These skills are reused to construct contingencies for
arbitrary door configurations.

The proposed prospective repair algorithm is presented in
Algorithm 1. It is divided into 3 main components: (1) a
general-purpose strategy is first learned in the simplest con-
text, (2) the robot is challenged with a new context and a
auxiliary perceptual feature is learned to differentiate the



new context, and (3) a search is conducted for local repairs
whose scope expands until a policy is acquired to handle
the exception. Algorithm 1 also depicts the schemas created
and/or modified after each of these steps. The proposed ap-
proach assumes that a general-purpose strategy exists that
applies approximately to the different variations in the task.
Subtasks are represented as separate policies to preserve the
general-purpose policy to remain unaltered.

As shown in Algorithm 1, human guidance also plays an
important role in the prospective repair algorithm, in the
form of structured tasks of increasing level of difficulty.
The simpler task ensures the robot can quickly learn a ba-
sic general-purpose strategy while later tasks allow the robot
extend on existing policies and learn to handle more com-
plicated contexts. More importantly, such structured tasks
can be created by simple adjustments of environmental con-
straints at the opportune time of the learning process. For
instance, opening or closing doors in the robot navigation
domain, or offering correctly oriented spoons in the apple
sauce experiments. This form of guidance is intuitive to a
human teacher as similar strategies can often be observed in
human parent/child interactions (McCarty, Clifton, and Col-
lard 1999).

Multi-stage training sequences provide for behavior
reuse, but they are not sufficient for causing an improve-
ment in learning performance. The appropriate state rep-
resentation and provisions for re-use are required. This is
the key difference between this algorithm and previous ap-
proaches to prospective behavior using flat learning algo-
rithms(Wheeler, Fagg, and Grupen 2002). The global state
of the robot, in this case, is represented using only its (x, y)
coordinates. The basic policy relies principally on this in-
formation and auxiliary state, i.e. door status indicators, are
stored separately and only in places where they are available
and needed to trigger contingencies for handling exceptions
to the basic plan.

Figure 4 shows the resulting learning curve from the
prospective repair/generalization approach applied to the
navigation scenario. The action set A remains the same as in
the flat learning formulation. Once again, the robot receives
1 unit of reward for achieving the goal and −0.01 units of
reward for every action it takes. The learning parameters,
γ = 1.0, α = 0.1, and ε = 0.1 likewise remain the same as
in the flat learning problem. In the first stage, a path toward
the goal is learned with all the doors open. The initial policy,
π, for traversing the unobstructed environment is illustrated
in Figure 5). It depends on (x, y) state information exclu-
sively and serves as the initial general-purpose solution. As
Figure 4 illustrates, in each subsequent stage, a new con-
text is introduced wherein exactly one of the doors is closed
causing the cumulative reward to decline sharply. At this
point, a new learning problem is initiated to recognize the
new context and to repair the general strategy. Under the ex-
perimental conditions described, the reward begins to climb
until it converges once again as the robot quickly adapts to
the new context. For the particular map used, the closing of
some doors do not cause the general policy to fail, therefore
there are only 4 dips in the learning curve. The prospec-
tive repair process is complete after less than 2, 000 episodes
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Figure 4: Average cumulative reward over 100 trials using
the prospective repair approach. Each dip in the learning
curve corresponds to a task change that leads to a specific
type of failure in the previously learned policy. Results
show that the prospective repair algorithm allows the robot
to quickly adapt to each new context.

compared to 30, 000 episodes for the flat-learning approach.
We can extrapolate these results and conclude that the ad-
vantage would be even more significantly as more doors are
added to the map, or when the robot has to pay attention to
more perceptual features.

Figure 6 illustrates learned paths to button 1 from any lo-
cation on the general policy π where the status of the corre-
sponding door can be observed. The path that is the shortest
is selected as the compensatory behavior and integrated with
the original behavior to achieve a new and more comprehen-
sive behavior.

Several design elements contributed to the performance
improvement. First, the choice of the initial state description
does indeed provide a policy that serves the task well from
many positions in the map—there are only a small number
of special cases that the robot must handle. As a result,
there is a significantly smaller state-action space than there
is with the flat learning approach. All guidance from a hu-
man teacher that has this property is expected to produce the
same utility in learning performance. Moreover, the search
for the prospective behavior is initiated as a separate learn-
ing problem with an independent goal and state transition
structure, thus enhancing re-use. When multiple doors are
closed simultaneously, the prospective repair approach natu-
rally decomposes the original problem into sub-problems as-
sociated with navigating to buttons corresponding to closed
doors en route to the goal. The robot can reuse previously
learned contingencies for relevant doors rather than having
to learn them from scratch as in the case of the flat learning
design.



TEACHER
• construct a simple initial

training context

• challenge the frontier of ex-
isting behavior

−→ all doors open −→

−→ close single doors −→

ROBOT
Given a set of percepts: f = {f1, ..., fi, fj , ..., fn}, and actions A =
{a1, ...am}:
1: Apply factorization technique to define state s = {f1, ..., fi}

where s ∈ S contains features that are frequently used for decision
making and auxiliary percepts F = {fj , ..., fn}.

2: Use Q-learning on MDP defined by < S,A,R > to learn a
general-purpose policy π, where R is the predefined reward func-
tion for task T .

recognize the perceptual associations of the subtask
3: Execute policy π until it leads to repeated failure and accumulate

experience data set, D, recording features f ∈ F and the success
or failure of π in that context.

4: Apply a generic discriminative learning algorithm (e.g. C4.5) on
D to identify a decision boundary g(f) that differentiates success
and failure under policy π. Function g is said to accept f if it
predicts success under policy π.

accommodate the new context
5: Create a new MDP defined by < S,A,R′ >, where R′ is a reward

for restoring f to the condition where g accepts f .
6: for all states s ∈ S in which g does not accept f do
7: Starting from s, learn a compensatory policy πg for achieving

the sub-goal defined by g.
8: end for
9: Merge πg with π to form a new hybrid policy π′.



Figure 5: Learning result from stage 1: an unobstructed path
π to the goal that functions as the general-purpose policy.

Conclusion and Discussion

This work advocates an incremental learning paradigm to-
wards behavior acquisition in robots, where a human user
can teach robots skills interactively, using a sequence of in-
creasingly challenging tasks. This is an open-ended process
that requires learning framework designers to build systems
that can act based on incomplete information and that adapt
to new situations where previously learned behavior fails.

In this work, human guidance first comes in the form of
training guidance—structuring the environment and focus-
ing exploration on a restricted set of sensors and effectors
and thus states and actions in order to facilitate the forma-
tion of new skills. In subsequent stages, constraints are in-
crementally removed.

The proposed prospective repair algorithm has significant
learning performance advantage over the flat Q-learning ap-
proach for solving tasks that can be decomposed into a se-
ries of problems and presented to the robot in an incremental
fashion. The significant improvement is the result of knowl-
edge reuse including maintaining much of the previously
learned path in the new strategy, and only learn a new com-
pensatory policy such that doors blocking the path to the
goal can be re-opened. Once the robot has learned how to
open any door individually, this knowledge is reused again
for the case where multiple doors are closed simultaneously,
thus minimizing redundant learning.

This paper offers a developmental view of learning and
teaching robot skills and makes a case for how this can be
achieved using the proposed learning framework to enable a
robot learn and refine skills incrementally through structured
learning stages provided by a human teacher.

Figure 6: Learned paths to the button 1 for opening door 1
from any location on the general policy π where the status
of the corresponding door can be observed. By integrating
this policy with π, a new, more comprehensive policy for
handling the contingency of the closing of door 1 can be
created.
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