
Distributed Smart Cameras for Aging in Place*

Adam Williams, Dan Xie, Shichao Ou,
Roderic Grupen, Allen Hanson, and Edward Riseman

Department of Computer Science
University of Massachusetts

Amherst, MA 01003

{apw, dxie, chao, grupen, hanson, riseman}@cs.umass.edu

Abstract
This paper describes the design and preliminary imple-

mentation of two distributed smart camera applications: a
fall detector and an object finder. These functions are part
of a novel suite of applications being developed to address
“aging in place” health care technologies. Our approach to
these applications is unique in that they are based heavily on
video data, whereas other solutions may require devices that
must be worn or attached to objects. The fall detector relies
on features extracted from video by the camera nodes, which
are sent to a central processing node where one of several
machine learning techniques are applied to detect a fall. If
a fall is detected, alerts are triggered both in the home and
to a third party. The object finder similarly uses a boosted
cascade of classifiers to visually recognize objects either by
request of the user or automatically when an object is moved.

Keywords
Smart cameras, activity monitoring, object recognition,

aging in place, distributed sensor networks

1 Introduction
The growing numbers of elderly individuals in need of

support to live in the community will severely test the cur-
rent services infrastructure. Part of the solution is to develop
technology for “aging in place,” so as to creatively increase
the length of time elders can remain at home. In the long
term, the goal is to “consumerize” health and wellness tech-
nologies and make it practical and affordable to incorporate
them into existing homes and lifestyles. Distributed sensor
networks are well suited for this purpose. Sensors can be
placed throughout an elderly person’s living space to create
a smart environment that monitors their safety and provides
a variety of other services. Camera sensors are particularly
attractive and cost effective due to the wide range of appli-
cations that can be based on visual data, including human
tracking and object recognition. We are especially interested
in the use of smart cameras, since their use will allow a re-
duction in costs and support requirements over those associ-
ated with PC-based cameras.

*This work supported in part by National Science Foundation grant SES-0527648,
ARO grant W911NF-05-1-0396, and NASA grant NNJ05HB61A-5710001842.

1.1 Project Overview
This paper describes a work-in-progress distributed sen-

sor network that provides health and wellness services to the
elderly. The primary goal is to create a practical, unobtru-
sive, cost effective system that specifically addresses the spe-
cial needs of the elderly. To this end, feedback and guidance
are being sought from our target audiences throughout the
development cycle. This feedback process is being facili-
tated by the Smith College School for Social Work through
a series of focus groups of the elderly, their caregivers, and
their families. We are prepared to adapt our applications, or
develop completely new ones, based on the results of these
focus groups. The initial set of applications includes a fall
detector, object finder, video phone, calendar, and address
book. We will focus our discussion on the fall detector and
object finder applications, as they are the two that rely on
the sensor network and are suited for implementation using
smart cameras.
1.2 Application Overview

Surveys of caregivers and family members of the elderly
have shown that knowing when an elderly person has fallen
is one of their primary concerns [13]. This is the case not
only due to the obvious, immediate medical attention that a
fall may require, but also because frequent falling and in-
stability can be a sign of more serious ailments. Two types
of commercial products exist that are worn by the person and
can alert a third party if a fall occurs. The first is a device that
is worn around the neck and has a button that can be pressed
to put the person in verbal contact with a dispatcher, who
can alert the appropriate authority [7]. The major drawback
to this device is, of course, that the fallen person must be
conscious enough to press the button after the fall. A second
device is also worn around the neck, but relies on a built-in
accelerometer to automatically detect a fall [15]. As with the
first device, this one will also trigger an alert to a third party,
who will relay it to the appropriate emergency authority. In
both cases, the user must remember to wear the device at all
times in order for it to be effective.

Our system uses cameras and machine learning tech-
niques to avoid the major problems with these commercial
devices. Cameras are used to visually track a person as they
move about their home. At each frame of video, several fea-
tures of the blobs being tracked are extracted and used to de-
termine if a fall has occurred. If a fall is detected, the system
attempts to initiate a video phone call with one of several



previously determined emergency contacts. The contact is
able to view the severity of the situation and act accordingly.
While this method does require that the fall occur in view
of a camera, it also relieves the user of the encumbrance of
wearing a device, while still providing automatic alerts and
enhanced communication to a third party.

The aging are often faced with short- and long-term mem-
ory deficiencies that negatively impact their quality of life. A
common and particularly frustrating side effect of this is an
increased frequency of misplacing household items such as
keys, eye glasses, remote controls, etc. We are developing
an “object finder” application to help with this problem. The
user is able to initiate a visual search of their living space
for a particular object, and the system will attempt to lo-
cate the object using detection and recognition techniques.
If the object is found, the application will display a live view
of its location. Most other object locating strategies involve
physically attaching an RFID tag or sound-emitting device
to important objects, which can be inconvenient or obtru-
sive. These other methods do have some advantages how-
ever, such as being able to locate an object out of view of
any camera. We may incorporate RFID-based object local-
ization into the system in the future.

2 System Overview
In this section, we describe the assumptions and general

sensor requirements of our system. We also describe the
specifics of our current prototype system. The primary de-
sign goal is to minimize the cost and effort of installing and
maintaining the system, while ensuring that the applications
still perform acceptably.
2.1 Camera Nodes

We assume that any living space that the user wants to be
actively monitored by the system are in full view of one or
more camera nodes. Each camera node consists of a cam-
era sensor, a CPU, RAM, and a network connection. An
example of a node could be a PTZ camera connected via
firewire to a standard PC with a wired ethernet connection, or
a wireless smart camera with an embedded CPU and RAM.
As previously mentioned, wireless smart cameras are prefer-
able due to their low profile and relatively low cost. High-
resolution sensors are not required for either of the applica-
tions discussed in this paper. Fall detection performs effec-
tively with a resolution of 128x128, and object recognition
with 320x240. The low resolution requirements result in low
CPU and RAM requirements as well, making them suited
for implementation using embedded processors. The cam-
eras do not have to be calibrated, although doing so allows
additional functionality. Each camera node is responsible for
extracting necessary data from its video stream and sending
it to the central processing node. This decreases the process-
ing latency and the inter-node bandwidth requirements. Each
node can also act as a raw video server when necessary.
2.2 Central Processing Node

The system must have one central processing node that
gathers the information produced by the camera nodes
and handles CPU-, RAM-, and storage-intensive processing
tasks. The central node handles resource management, dis-
patches fall alerts, and initiates object finding. The exact

Figure 1. The fall detection and alert process

processing requirements of the central processing node de-
pends largely on the number of camera nodes that exist in
the network.

2.3 Other Devices
We also assume that the user will have a display, input

device, and speakers in most or all major living spaces in or-
der to interact with and receive information from the central
processing node. We are particularly interested in alterna-
tive input methods such as touch screens and voice or ges-
ture recognition. In the future, additional sensors may also
be incorporated into the network, such as RFID for object
localization, floor-mounted vibration sensors for fall detec-
tion in privacy-sensitive areas, and infrared cameras for ad-
ditional tracking and health monitoring capabilities. We are
also looking into the use of small mobile robots that can de-
liver services throughout the home.

2.4 Prototype System
Our experimental living space consists of five camera

nodes. Each node is equipped with a Sony EVI-D100 PTZ
camera mounted on the wall and connected to a VMIC single
board computer via a Leutron Vision frame grabber. Each
VMIC board has a 928MHz CPU, 256MB of RAM, and 128
MB of compact flash storage. The central processing node
is also a VMIC board, but it has 30GB of hard disk stor-
age. All of the nodes are connected via 100Mbps ethernet.
Data is transmitted among the nodes via the NDDS publish-
subscribe middleware. A simple TCP-based client/server
model can also be used. This prototype system was origi-
nally developed with high-performance robotics applications
in mind and has processing power that is in excess of the cur-
rent applications’ requirements.

3 Fall Detection
The fall detection application constantly tracks people as

they move about the living environment in view of the cam-
eras. At every frame of a person’s motion, several features
are extracted and fused with features from previous frames.
This sequence of features is analyzed using one of several
techniques to determine if a fall has occurred. If a fall is
detected, the alert procedure is initiated.



3.1 Tracking
A simple tracking procedure is employed at each camera

node and is suited for implementation on embedded proces-
sors. Specifically, a background subtraction method is used
to extract foreground objects in each frame of video. The
background model is a running average computed at each
pixel [3]. When a new frame is captured, pixels in the frame
that differ from the background model by more than a fixed
threshold are considered to be in the foreground. The new
frame is then averaged into the background model, with fore-
ground pixels weighted less than background pixels. A dila-
tion operation is then applied to the foreground mask in or-
der to merge blobs that are very close to each other, followed
by a fast connected components procedure to label the fore-
ground objects. Objects that do not contain a large enough
number of pixels to be a human are discarded. Then the 2D
image coordinates, 2D velocity, aspect ratio, and color his-
togram of the human-sized blobs are extracted and sent to
the central processing node for further analysis.

If a person is visible simultaneously in more than one
calibrated camera, the central processing node may be able
to match the blobs in different cameras using prior knowl-
edge of camera location and the blobs’ color histograms. If a
match occurs, triangulation can be performed to provide 3D
world coordinates of the person, which can make fall detec-
tion more effective. This information can also be provided
to the emergency contact if a fall is detected.
3.2 Detection

The central processing node collects all of the tracking
information provided by each camera node at each frame
of video. The central node will attempt to compute frame-
to-frame object correspondences for the blobs from a given
camera node based on the color histograms and locations of
objects. Using the frame-to-frame correspondences, a se-
quence of features is produced for each person in each cam-
era. If 3D tracking is enabled as mentioned in the previous
section, the correspondences yield one global sequence of
features for each person. Regardless of whether the position
and velocity features are 2D or 3D, several procedures are
available for analyzing a sequence to detect a fall.

The first procedure is to simply make a decision based
on the aspect ratio of the bounding box around a blob in the
current frame. If the aspect ratio is greater than 1, the system
assumes the person is horizontal and has fallen. Note that
aspect ratio is defined as width divided by height. If 3D po-
sition information is available, the system can also determine
if the person is on or near the floor. This procedure is prone
to false alarms, particularly if someone is purposely sitting
or laying on or near the floor, or if the foreground segmenta-
tion is inaccurate. This procedure is only recommended as a
solution when CPU resources are limited.

A different and very effective supervised learning ap-
proach involves the use of Hidden Markov Models (HMMs)
[12], a popular tool for activity recognition and fall detec-
tion [10] [4][14]. However it also requires large amounts
of view-dependent training data that makes it impractical for
large-scale use. Training data is collected by having a person
perform several different common actions such as walking
and sitting along with simulated falls in view of each camera.

Tracking is performed as described in section 3.1, and each
frame is labeled by hand as containing a fall or not. Each se-
quence of frames corresponding to one action is also labeled
as containing a fall or not. A support vector machine (SVM)
classifier [16] [2] is constructed using the individual 2-class
labeled frame data. Two HMMs are also trained using the
labeled sequences, one with falling sequences and one with
no-fall sequences. Note that during the HMM training stage,
each time step in a sequence has only one feature: a boolean
value indicating whether the frame contains a fall. To detect
a fall in a new sequence of activity, each frame is classified
by the SVM as containing a fall or not. Once enough frames
have been observed, the sequence of SVM decisions (one for
each frame) is then evaluated under each HMM to produce
two likelihood values. The sequence is then given the label
of the HMM that yielded the maximum likelihood. In our
experiments, this method detected falls with 98% accuracy,
but again the effort needed to collect training data makes it
impractical.

Finally there is an unsupervised technique that is the most
practical of the three. This procedure only requires a collec-
tion of “normal” sequences of activities from each camera.
These can be automatically gathered in an initial training pe-
riod for the system, during which the system assumes a fall
does not occur. Once these sequences have been collected,
they are used as training data for a single HMM. As a new
sequence is being observed, it is evaluated under this HMM
at each new frame, which allows the rate of change of the
normalized likelihood of the sequence to be monitored. If
the normalized likelihood drops rapidly, something unusual
is likely occurring, and some simple tests can be applied such
as in the first procedure to determine if it is indeed a fall. This
method shows the most promise in terms of practicality and
qualitative effectiveness.

3.3 Alerts
The central processing node will dispatch alerts once a

fall is observed. First, a local alert is broadcast over the
speakers and display devices in the person’s home. This pro-
vides reassurance that action is being taken in the case of a
fall, or gives them a chance to cancel the alert in case of a
false alarm. If the alarm is not disabled within a brief period
of time, the central processing node will make attempts to
display an alert remotely to the people on a prioritized list of
emergency contacts.

It will try each contact until it reaches the end of the list,
at which point it will contact 911 or other emergency service.
The remote alert contains information about who has fallen
as well as the location of the fall and a live video window of
the area where the fall occurred. At this point, the contact
can initiate a video phone call to the fallen person in order to
make voice and visual contact with them so an assessment of
the situation can be made.

3.4 Privacy
We must be very sensitive to the privacy concerns that

will undoubtedly arise with the thought of placing cameras in
people’s homes. This is especially true in this case, as we are
proposing to display video of people in vulnerable situations
to their relatives or trusted friends. To help alleviate concerns



Figure 2. A remote fall alert

about this issue, a privacy guard setting is included in the fall
detection system that will place a featureless silhouette over
the image of a person in the live video that is streamed to the
emergency contact. Work is also in progress on providing a
virtual reality-based view of the person’s home based on the
technology described in [11]. The feedback received from
focus groups of elders will guide us as we continue to deal
with privacy issues in this and other aspects of the project.
4 Object Finder

The object finding application consists of two coopera-
tive modules: Object Change Detection and Active Object
Searching. The former monitors the scene and records the
position of an object if it is moved. The latter is activated
when the position of a queried object has not been previously
recorded by the Object Change Detection module. These
two components work cooperately to make the object find-
ing process efficient and robust. To the extent of our knowl-
edge, our object finding application is the first that combines
object detection and active searching to allow people to find
objects in their living environment.
4.1 Object Modeling

Two kinds of features are used to represent the object and
perform the detection and recognition.

(1) SIFT features. SIFT (Scale Invariant Feature Trans-
form) represents an image as a collection of local feature
vectors, each of which is invariant to image translation, scal-
ing, rotation, and partially invariant to illumination changes
and affine or 3D projection [8] [9]. Recognition performed
with this type of feature has been shown to be quite robust in
realistic and complex environments.

(2) Haar-like features. The algorithm proposed in [17]
[6] and provided by the Intel OpenCV libraries can achieve
rapid object detection based on a boosted cascade of simple
Haar-like features. These features are scale invariant and can
be calculated rapidly. Increasingly more complex classifiers
produced by the AdaBoost algorithm are combined in a cas-
cade structure, which allows many background regions to be
discarded quickly and is very effective for our application.
4.2 Object Finding Procedure

(1) Object Change Detection: The Object Change Detec-
tion module monitors the scene and launches the object de-

Figure 3. The object finder result display.

tection/recognition when the position of an object changes.
To achieve this, all of the cameras nodes continuously main-
tain the average background model and perform foreground
segmentation as described in section 3. If a foreground blob
(object) has been static for a given time T, it is considered
a newly moved object. Information about the blob is sent to
the central processing node where an attempt will be made to
recognize the object. Since the object blobs are usually too
small (10-20 pixels) for recognition, the camera will bring
the object to the center of image and zoom in to a larger
scale. Normalized cross-correlation and neighborhood re-
gion searching are used to match the object blob in frames
when a camera is panning or tilting. In the recognition phase,
the SIFT keys are calculated for the object blob and an at-
tempt is made to match the object with those in the database.
A match score is generated by the central processing node
for each camera view. The sum rule for decision fusion [1] is
used to merge the information from multiple views and gen-
erate a total score. If the score of an object is higher than a
threshold, the position information (either 2D or 3D depend-
ing on the number of calibrated cameras that saw the object)
will be added to this object’s known position list for future
queries. Object Change Detection reduces the time of the
entire object finding process by storing the position informa-
tion for any object it has seen.

(2) Active Object Searching: This module runs on the cen-
tral processing node and directly handles the query from the
user. It first checks the queried object’s known position list,
and if the position of the queried object has been recorded, it
is reported to the user; otherwise the system executes a scan
over the scene. The central processing node selects a scan-
ning camera node, which generates a series of images (4-5
for a 10x10 room) that cover the scene and are sent back to
the central processing node. Then the SIFT and Haar-like
features are both used in an attempt to detect the queried
object in these images. In most cases, the object detection
algorithms using SIFT and Haar-like features both generate
some candidate regions. A weighted decision method is used
to determine the scores for all candidate regions, and we re-
port any regions whose score is higher than a threshold to the
user. The results are presented in the form of labeled images



Figure 4. Active object searching

and text and voice descriptions.
To evaluate the performance of the object finder, we built

models for 5 objects: a key, cup, cell phone, TV remote,
and a book. The average success rate of the Object Change
Detection module is 80%-90% and that of the Active Ob-
ject Searching module is 70%-80%. The computation time
is 1-2 seconds for Object Change Detection and less than 20
seconds for Active Object Searching.
5 Resource Management

While much of our work on resource management is left
for the future, we discuss it briefly here because of its impor-
tance to distributed sensor networks. There are two primary,
limited resources that must be managed: cameras and en-
ergy. Different applications may require the camera nodes
to be in different configurations. For example, the fall de-
tection may need tracking information from a camera node,
which is also receiving a request to scan an area for the TV
remote. Certainly detecting falls must take priority over find-
ing the remote, so the central processing node will block the
needed camera nodes from receiving lower priority requests.
The camera nodes that will be needed for tracking by the
fall detector can be determined based on the dynamics of the
person’s motion [5]. Similarly, this information can be ex-
ploited for duty-cycling to decrease the power consumption
of the sensors.
6 Conclusions

Distributed smart camera networks for the aging in place
of the elderly show great promise in their versatility, space
efficiency, and cost-effectiveness. In this paper, we have de-
scribed the prototype implementation of a fall detector and
an object finder, two pieces of a larger suite of applications
and services for the elderly that are in development. While
the camera nodes in this prototype system contain PC-based
cameras, we describe how some of the processing tasks re-
quired by the applications are well-suited for implementa-
tion on smart cameras. In the future, we plan to incorpo-

rate wireless Agilent Cyclops smart cameras into the system.
This will require extensive work on energy management for
efficient duty-cycling of these battery-powered devices, as
well as additional work on managing heterogeneous cam-
era nodes with varying resolutions and processing capabil-
ities. In addition, the system must be reliable and perform
predictably, since it will be providing critical services to its
users.
7 Acknowledgments

This work is supported in part by NSF grant SES-
0527648, ARO grant W911NF-05-1-0396, and NASA grant
NNJ05HB61A-5710001842. We would like to thank our un-
dergraduate researchers, Jessica Krause and Joe Gallo, for
their programming work. We would especially like to thank
Joan Hanson for her patience and willingness to fall on the
floor repeatedly.
8 References
[1] R. Brooks, P. Ramanathan, and A. Sayeed. Distributed target classi-

fication and tracking in sensor networks. Proceedings of the IEEE,
91(8):1163–1171, 2003.

[2] C. Cortes and V. Vapnik. Support vector networks. Machine Learning,
20:273–297, November 1995.

[3] D. A. Forsyth and J. Ponce. Computer Vision: A Modern Approach.
Prentice Hall, 2002.

[4] J. Gao, A. G. Hauptmann, A. Bharucha, and H. D. Wactlar. Din-
ing activity analysis using a Hidden Markov Model. In International
Conference on Pattern Recognition, 2004.

[5] D. Karuppiah, R. Grupen, A. Hanson, and E. Riseman. Smart re-
source reconfiguration by exploiting dynamics in perceptual tasks. In
International Conference on Robotics and Systems, 2005.

[6] R. Lienhart and J. Maydt. An extended set of haar-like features for
rapid object detection. In IEEE International Conference on Image
Processing, 2002.

[7] LifeAlert. http://www.lifealert.com.

[8] D. G. Lowe. Object recognition from local scale-invariant features. In
IEEE International Conference on Computer Vision, 1999.

[9] D. G. Lowe. Distinctive image features from scale invariant keypoints.
International Journal of Computer Vision, 2004.

[10] H. Nait-Charif and S. J. McKenna. Activity summarisation and fall
detection in a supportive home environment. In International Confer-
ence on Pattern Recognition, 2004.

[11] S. Ou, D. R. Karuppiah, A. Fagg, and E. Riseman. An augmented
virtual reality interface for assistive monitoring of smart spaces. In
IEEE International Conference on Pervasive Computing, 2004.

[12] L. R. Rabiner. A tutorial on Hidden Markov Models and selected ap-
plications in speech recognition. Proceedings of the IEEE, 77(2):257–
286, 1989.

[13] P. Roessler, S. Consolvo, and B. Shelton. Phase 2 of Computer-
Supported Coordinated Care project. Technical Report IRS-TR-04-
006, Intel Research Seattle, 2004.

[14] B. U. Toreyin, Y. Dedeoglu, and A. E. Cetin. Hmm based falling
person detection using both audio and video. In IEEE Workshop on
Human-Computer Interaction, 2005.

[15] Tunstall Fall Detector. http://www.tunstallaustralasia.com/fall detector.php.

[16] V. N. Vapnik. The Nature of Statistical Learning Theory. Springer,
New York, 1995.

[17] P. Viola and M. Jones. Rapid object detection using a boosted cas-
cade of simple features. In IEEE Conference on Computer Vision and
Pattern Recognition, 2001.


