Natural Task Decomposition with Intrinsic Potential Fields

Stephen Hart and Roderic Grupen
Department of Computer Science
University of Massachusetts Amherst
Amherst, MA 01003 USA

{shart |

Abstract— Any given task can be solved in a number of
ways, whether through path-planning, modeling, or control
techniques. In this paper, we present a methodology for
natural task decomposition through the use of intrinsically
meaningful potential fields. Specifically, we demonstrate that
using classical conditioning measures in a concurrent control
framework provides a domain-general means for solving tasks.
Among the conditioning measures we use are manipulability [1],
localizability [2], and range of motion. To illustrate the value of
our approach we demonstrate its applicability to an industrially
relevent inspection task.

I. INTRODUCTION

Nikolai Bernstein defined dexterity in terms of an organ-
ism’s versatility—both physically and cognitively—to adapt
to a rich and unpredictable environment [3]. In this paper,
we demonstrate the usefulness of conditioning kinematic
chains to respond competently under such uncertainty. As
a result, we show how traditional conditioning measures
can be used in a non-traditional way: as plans to solve
behavioral problems. Such techniques are not specific to a
task, but instead provide intrinsic fields that can be applied
in manipulation and recognition tasks.

One such plan for posturing a system is through isotropic
conditioning which allows for a tradeoff in the ability to
perceive (input) errors and to impart (output) movements.
In such a way, isotropic conditioning exhibits a principle
of flexibility and least commitment for unknown future
circumstances. Such a methodology is therefore useful when
programming dexterous robots that must achieve a variety
of complex behavior in uncertain real-world environments.
We also present kinematic constraints—such as keeping
a manipulator away from its joint range limits—as con-
ditioning fields. All conditioning fields presented in this
paper, however, are similar in that they provide a system
with a potential function that directs the mechanism toward
desirable kinematic configurations.

In this work, conditioning fields are used directly as poten-
tial fields which conditioning controllers can follow toward
“sweet-spots” where the device can yield optimal kinematic
properties. When employed in a concurrent control frame-
work, subordinate conditioning controllers may increase the
efficiency of higher-priority, task-specific, position or force
controllers. For example, in the presence of uncertainty, it
is beneficial to keep a manipulator kinematically isotropic
when moving to grasp an object of unknown geometry. When
conditioning controllers are used as superior objectives, such
as moving an acquired object to a well-conditioned visual
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sweet-spot, they provide goals that may increase the effec-
tiveness and accuracy of a task, such as feature recognition.
Conditioning controllers are formulated in this paper using
the control basis framework for multi-objective control.

Il. RELATED WORK

The condition number of the manipulator Jacobian was
introduced by Salisbury and Craig [4] to evaluate the kin-
odynamic state of a mechanism. Yoshikawa extended these
ideas to provide a means of optimizing the manipulability
of a mechanism while performing a task [1]. The proposed
method biases the state of the manipulator to more isotropic
configurations where forces and velocities can be applied
equally in any direction. Examples of mechanisms employing
kinematic and isotropic conditioning techniques based on the
manipulator Jacobian can be found in [5], [6], [7], [8], [9].
The concept of isotropic conditioning is equally effective
for any linear transformation and was later generalized to
acceleration and inertial measures [10], [11], [5], [12], and
also to evaluate viewpoint quality in a stereo system in
order to maximize localization precision [2]. In this paper,
we demonstrate how kinematic conditioning underlies both
the manipulability and localizability concepts in the previous
literature and the role of both of these concepts in dexterous
inspection tasks.

Using the same techniques, anisotropic conditioning of
a mechanism can be employed when the task is well-
specified ahead of time. Chiu demonstrated how to utilize
the redundancy of a manipulator to posture an end-effector
to optimize the application of velocities and forces along
known task directions [13]. In this work, it was shown
how to increase either amplification or precision along a
specified task-direction. In this paper, we assume little prior
task knowledge and focus on isotropic conditioning only.

Section 1V provides a description of the control basis
framework for concurrent control [14], [15]. This framework
has been used in many domains including grasp-control,
multi-robot mapping and localization, and walking gait for-
mulation [14], [16], [17]. Section V presents a means of
representing conditioning metrics in terms of the control
basis.

I11. 1SOTROPIC CONDITIONING

The “condition” of a linear transformation, y = A,
can be described in terms of the deformation A causes to
input signals, . The influence of transformation A can



be visualized by mapping an m-dimensional hyper-sphere
“test pattern” |z||? = 22 + 2 + ... + 22, < 1 through
an n x m transform A to see how it is distorted into an
n-dimensional hyper-ellipsoid. This “conditioning” ellipsoid
reveals the directional dependence of the transformation, A
[5]. Figure 1 portrays such an analysis in two dimensions.
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Fig. 1.  The distribution of inputs defined by the circle in the x plane,
xTa < 1, maps through A to an ellipse in the y plane defined by the
singular values and singular vectors of A, or equivalently, the eigenvalues
and eigenvectors of AAT,

If output movements are unknown for a particular task
a priori, isotropic conditioning can improve the ability
of the manipulator to respond uniformly to unpredictable
events in unknown geometries. Isotropic conditioning can be
accomplished by examining the volume of the conditioning
ellipsoid. The volume of the ellipsoid can be appreciable
even when the matrix A is near a singularity, but in general,
volume increases as the conditioning ellipsoid becomes more
spherical.

In order to derive an analytical description of the con-
ditioning ellipsoid’s volume, note that the singular vectors
of A are the eigenvectors of AA” and the singular values
of A are the square roots of the eigenvalues of AAT.
The ellipsoid is expressed in terms of its singular values
Y = [o1 02 -+ op), in descending order of magnitude.
The product of the singular values, []}" , o, yields a measure
proportional to the volume of the ellipsoid. If A is singular,
its volume is zero. Alternatively, the same measure can be
computed

k(A) =

A. Measure of Manipulability

Yoshikawa applied the above analysis to the manipulator
Jacobian J,, and proposed a measure of manipulability
(MoM) that evaluates the kinematic “condition” of a robot
mechanism. Effectively capturing the distance the mech-
anism is from a singularity, this measure can keep the
system well-conditioned to impart velocities or forces in any
direction. By Equation 1, the measure of isotropy of the
manipulator Jacobian is defined as:

det(AAT). @)
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Rm =
B. Measure of Localizability

We can also pose the stereo reconstruction of a unique
feature on two image planes as a kinematics problem and ap-
ply the above conditioning analysis. The stereo triangulation

equations are used to transform an oculomotor configuration
into a Cartesian coordinate of the feature. We can compute
the principal kinematic transformations to evaluate visual
acuity as a function of the relative position of the feature.
We can construct an oculomotor Jacobian for the stereo
triangulation equations, dr = J,d~, the transformation from
oculomotor to Cartesian velocities. As such, the oculomotor
Jacobian may be used to estimate the sensitivity to errors in
the observed configuration, [y vr]. Applying Equation 1
to the oculomotor Jacobian J,, we can compute the visual
condition of a stereo configuration:

o= y\/det(3,I7) 3)

The oculomotor conditioning ellipsoid represents the error
covariance in stereo localization and consequently, the spa-
tially anisotropic uncertainty of the stereo imaging geometry.
We will thus define the measure of localizability MoL as
k. Figure 2 shows the MoL for a stereo camera pair in
2-dimensions. This scalar field is white where the stereo
geometry is well conditioned for precise feature localization.

Fig. 2. The Relative Localizability Scalar Field: for the 2-D case
det(J,IT)1/2, Examples of the localizability ellipsoid at several positions
marked by crosshairs are overlaid onto the field.

Superimposed on the localizability field in Figure 2 are
ellipsoids derived from J J7 at several positions marked
by crosshairs. The ellipsoids illustrate the shape (if not the
magnitude) of the Cartesian error covariance. Generally, the
lateral error is relatively small and the radial error can vary
dramatically depending on the position of the feature.

IV. THE CONTROL BASIS

The conditioning fields presented above will be used di-
rectly as artificial potentials. Control inputs in the quasistatic
case can be computed as the gradient of these conditioning
potentials. We will formulate these controllers using the con-
trol basis framework for discrete event dynamic systems [14],
[15], [18]. Controller i is denoted ¢;.

Concurrent control commands are constructed by pro-
jecting the output of a subordinate controller, ¢-, into the
nullspace of a higher priority controller, ¢; The nullspace
N of the control command of ¢, is (I — Jle) where J;
is the Jacobian matrix of the objective with respect to the
configuration variables # and JZ.# is its pseudoinverse [5].



Nullspace projections can be chained together to capture an
array of prioritized control objectives. Our shorthand for this
nullspace projection is written using the “subject-to” operator
“q” [14]. For example, ¢2 < p1—read, “¢po subject-to ¢;"—
captures the case where subordinate controller ¢o projects
outputs into the nullspace of the superior controller ¢;.

V. CONTROLLER DEFINITIONS

In this section, we define controllers that allow for a
mechanism to optimize the system’s configuration according
to the conditioning metrics described above.

A. lsotropic Conditioning Controllers

For an isotropic manipulator conditioning field, we define
a potential field according to its gradient:

Pre(q) = f%\/det(JmJﬂ) 4)

We define a kinematic conditioning controller ¢ that com-
putes an error according to the gradient of this field, and
moves to maximize the system’s isotropic conditioning.

For the oculomotor Jacobian J,(v) , we can describe a
potential field according to the gradient of the corresponding
relative localizability scalar field:

poc0) = = Jdet3,3E) ©)
We define a visually conditioning controller ¢, that com-
putes an error according to this gradient, and moves to max-
imize the system’s isotropic visual acuity. The ¢, controller
can be "dexterous”—it can engage either manipulator or head
degrees of freedom to ascend the field.

B. Constraint Posturing Controllers

In addition to conditioning objectives that follow gradients
defined by the shape of the Jacobian transformations, we
can apply other objective fields that posture the mechanism
towards desirable kinematic configurations. In particular, we
will describe a metric that measures proximity to joint range
limits and a metric that measures proximity to self-collisions.

For an n-dimensional mechanism, we can define a n-
dimensional cosine field around the center of each joint’s
range of motion. The field for a set of joint angles q is
defined by:

Crom(Q) = — Z cos(ri(q:)) (6)
where
rilg) = ——2—r. )
Gmax — 9min

In this equation, ¢q. and g¢.;. represent the upper and
lower limits of ¢;’s range of motion, and ¢ = (¢maz —
gmin)/2. This field provides a convex potential that is cen-
tered halfway between each joint’s upper and lower limits.
We can define a controller ¢,.,,, that moves a set of joints
according to the gradient of this field:

d

Prom ((l) = - Ecrom (q) (8)

It may also be useful to define an objective function
that prevents a mechanism from self-collisions. Ideally, this
function f,,s may be harmonic or sub-harmonic. In the
experiments presented in this paper we use a simple potential
field approach [19] and define the controller ¢,ps.

C. REACH Controller Composition

In this section, we describe three REACH composite con-
trollers that allow a robot to optimize the conditioning met-
rics described above in the presence of other task objectives.

1) Reaching to a Target Location: Often, we desire a
manipulator to move to a desired location in Cartesian
space. A control law can be defined using operational space
motion control to bring a system to a given reference [20].
We will define such a controller as ¢,,,. We optimize the
metrics described above as much as possible by projecting
the conditioning objectives into the nullspace of ¢,.s. We
define the first REACH controller as:

QSRl = Qbrom < ¢kc < (rprS < (bobs (9)

2) Multi-Objective Conditioning Controllers: Further-
more, we can describe intrinsic goals of the system that
bring the manipulator to well-conditioned locations. The
following two control laws bring the system to kinematic and
oculomotor “sweet-spots” while still preventing collisions.

¢R2 = d)rom < ¢kc < ¢obs (10)

and

¢R3 = (ybrom < st(,' < Qb’z)(: < ¢obs (11)

These three control laws provide useful actions that can be
assembled into policies based on task requirements. It is
important to note the prevalence of conditioning metrics in
these policies which we will see examples of in the next
section.

VI. EXPERIMENTS

We now present demonstrations in which isotropic and
constraint conditioning controllers are assembled in a concur-
rent control framework. The demonstrations were performed
on the the bimanual humanoid robot “Dexter,” seen in
Figure 3. This robot has a 2-DOF panftilt head equipped
with two Sony cameras capable of stereo triangulation and
two 7-DOF Whole-Arm Manipulators (Barrett Technologies,
Cambridge MA). Each WAM is equipped with a 3-finger, 4
DOF Barrett Hand and 6-axis finger-tip load cells.

In the first demonstration, manipulability is optimized in
the course of reaching to an object of unknown shape such
that a grasp controller may achieve wrench closure. Next,
a concurrent control law is used to condition the state of
the mechanism subject to maintaining a grasp on the object.
Lastly, it is shown how the localizability metric may be used
to inform action selection depending on the character of
the visual features to be inspected. Salient features of some



objects are inspectable immediately, others must be grasped
and moved to condition the stereo vision system further.

Concurrent control laws described in Section V-C, are used
to reach to well-conditioned locations either exclusively or
subject to reaching to a target location. The kinematic con-
straint controllers are also employed to ensure collision-free
movements and limitations with respect to joint ranges of
motion. The result is that conditioning control is subordinate
to every control task submitted to the robot.

A. Grasping an Object

Previous work by Coelho [18] and Platt [17] provided a
control formulation for achieving a wrench closure grasp
on an object with shape unknown a priori. The resulting
controller, ¢, minimizes the net wrench residual between
the fingers in contact with the object. This controller requires
the dexterous application of movements and forces, and
demonstrates the necessity for conditioning the mechanism
before and during grasp controller execution when these
movements and forces are not known ahead of time.

In our first set of experiments, the robot begins in a start
configuration determined by the execution of ¢,,,. This
position is convenient because it places both arms above the
table as seen in Figure 3(a), but does not obstruct the stereo
head’s view of any object placed on the table. The robot then
reaches both of its arms towards a box placed in its reachable
workspace. The position of the box is recovered through
stereo triangulation and background subtraction techniques.
When localization completes, the robot employs control law
¢ g1 to bring its arms close to the box, as seen in Figure 3(b).
At this point, ¢, takes over to achieve wrench closure.

Fig. 3. (a) and (b) show the robot after localizing the box before and after,
respectively, having completed a bimanual reach to its location.

B. Conditioning the Grasp

Once wrench closure is achieved, the arm configuration is
optimized for the average manipulability of both arms subject
to maintaining the grasp. The initial grasp is governed by
compliance to the object geometry. However, after a grasp is
achieved, the robot may reconfigure to better, kinematically
isotropic, arm postures while preserving the wrench closure.

Figures 4(a) and 4(b) show the robot before and after the
execution of the new control combination:

(rbcg ¢R2 < ¢wc (12)

Figures 4(c) and 4(d) show the trajectory of the robot’s arms
and the box for two instances of this control law. Figure 5

shows the increase of the MoM averaged over six executions
of ¢., performed on the robot after grasping the box from
different starting positions and orientations, all within the
robot’s reachable workspace. Shown in the graph is the MoM
for each arm individually, as well as their average. The
average MoM was the metric optimized, as can be seen by
the signal’s monotonic increase.

MoM for Left Arm
~ — — MoM for Right Arm
Average MoM for Both Arms

Measure of Manipulability (MoM)

0.15F

100 150 200 250 300 350 400 450 500
Control lterations
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Fig. 5. This graph shows the increase in manipulability that occurs through
the execution of ¢4 after the box has been grasped. The plot shows the
measure of manipulability (MoM) for each arm individually, and averaged
over 6 trials performed on the robot after grasping the box from different
starting positions and orientations.

C. Object Identification

In the final example of the usefulness of kinematic con-
ditioning, we demonstrate a controller designed to move the
grasped object into a visually conditioned “sweet-spot” such
that a barcode pattern on the object’s surface can be inspected
and classified. This task requires a visual perspective com-
patible with the required spatial precisions. The robot can
achieve stereo configurations that provide the appropriate
visual acuity by ascending the localizability field. Figure 6
shows how the measure of localizability metric «; increases
according to control law ¢r3 for both one- and two-handed
grasps. Figure 7 shows the robot after the execution of this
control law while maintaining a two-handed grasp.

For these experiments, a barcode pattern belonging to one
of three different sets was placed on the robot-facing side
of the box used in the previous demonstrations. Each set
of patterns contains three test-patterns that have the same
maximum spatial frequency bandwidth, designated as either
“high,” “low,” or “medium.” Figure 9 shows the three sets
of three patterns. Table | shows the width of the smallest
period T of each barcode pattern, as well as their expected
pixel resolution on the robot’s cameras and the MoL metric
at three different depths x4. These values were calculated
for the 640x480 images using a pinhole camera model with
a focal length of 837 mm. The depths correspond to the
location of the box 1) in the center of the table in front of
the robot, after localizing it, 2) after the robot has grasped
the box using control law ¢ro < ¢, (Using a two handed
grasp), and 3) after the execution of control law ¢ r3 < Pue.
The views from the robot’s left camera at each stage of the
policy are seen in Figure 8.
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(@) and (b) show pictures of the robot before and after the execution of ¢.4. (c) and (d) show top-down representations of two sample trajectories

the robot follows during execution of the same control law. Note that the configurations of the robot’s hands (joining the arms to the object) are not shown.
These graphs were generated from actual position information. Time progresses from light to dark.

"

(®
Fig. 8.

(b)

Screen-shots from the robot’s left camera (a) with the box on the table, (b) with the box grasped with control law ¢ g2 < ¢uc, and 3) following

the execution of ¢ o < pwe. These 640x480 pixel images were captured while one of the high-frequency patterns was placed on the box.

Leftam Botn Arms

asure of Localizabilty (MoL)

@
Fig. 6. (a) shows the increase of the measure localizability metric under
¢r3 While grasping a small object. (b) shows the same metric when the
robot grasps the larger box with two hands. Notice how the increase is
greater for the smaller object. This performance gain is a result of being
unconstrained by the wrench closure controller, which in the two handed
case has to maintain the relative positions and orientations of both hands.

(b)

TABLE |
PIXELS PER PERIOD AND MoL
| [ 24=100cm | g =75cm [ 24 =50 cm |

Thigh = 2 MM 167 2.32 335
Trediam = 6 MM 502 6.97 10.04
Tiow = 30 MM 25.11 33.48 50.02

[ MoL I 1.05 [ 232 [ 731 ]

For each pattern in each test set and for the pattern
perceived from the robot’s left camera, the barcode was
converted to a string of intervals based on color and bar
width. Classification was then performed by finding the
lowest mean-squared error match between the perceived test
pattern and the three patterns in the same (known) frequency
class. Figure 10 shows the accuracy in classification for each
pattern set at each of the three locations (on the table, at

Fig. 7. This picture shows the robot after the execution of control law
$R3 < Pwe-

the most bimanual manipulable position, and where there
is the most visual acuity, subject to self-collisions). Each
classification bar is the average result from ten trials. It can
be seen that the ability to perceive higher frequencies clearly
increases when moving the object towards the visually con-
ditioned “sweet-spot.” Note that, due to the symmetry of the
bimanual system, the execution of control law ¢ go <@, also
brings the object to a more visually isotropic configuration
then when the object is on the table. These experiments
suggest that, if the spatial frequency of the test patterns is
known, the robot can actively decide which action needs to
be taken—how close the robot needs to bring the object to
its cameras—to accurately perform classification.

VII. DiscussiION AND CONCLUSIONS

In this paper we introduced a uniform treatment of condi-
tioning of the manipulator and oculomotor Jacobians. The
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Fig. 9. The barcode patterns used for classification experiments. Patterns
(a-c) are the low-frequency patterns, and were randomly generated. (d-
f) are medium-frequency patterns, representing the characters A, B, and
C, respectively, in the Code-39 barcode standard. The high-frequency
patterns (g-i), are the Code-39 encoded strings ROBOT, DEXTER and
AMHERST, respectively. Each pattern is 10 cm square.
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Fig. 10. The classification error of each of the barcode pattern groups while
the box is on the table, at the most bimanually manipulable position, and
at the most visually acute position. It is clear that classification of the low-
frequency box is successful while the object is on the table. After moving
the object closer, using ¢ pa ¢ we, the low- and medium-frequency patterns
are classifiable. After the execution of ¢rs < ¢, Where visual acuity is
maximal, all three frequency patterns are classifiable with a high degree of
accuracy.

resulting metrics provide objectives that can be attached
as subordinate goals to other behavior, or as that can be
used as superior objectives to bring the system to intrinsic
“sweet-spots.” Furthermore, we demonstrate how controllers
designed to optimize these metrics, along with task-specific,
and constraint-driven controllers, can be employed in a
combinatoric basis to achieve a wealth of “natural” behavior
for a robot system. The control laws provide important
behavior that a robot operating in an unknown environment
may employ in light of uncertain future circumstances.

The ideas presented in this paper also suggest a method for

performing sensor fusion to accurately localize the position
or size of grasped objects. Computing the conditioning
ellipsoids of visual and spatial acuity metrics provide the first
and second moments needed for the application of Kalman
Filter estimation techniques. Although, a demonstration of
this idea is beyond the scope of the current paper, it is the
subject of current research.
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