
Resource management for real-time tasks in mobile robotics q

Huan Li a,*,1, Krithi Ramamritham b, Prashant Shenoy a, Roderic A. Grupen a,
John D. Sweeney a

a Department of Computer Science, University of Massachusetts, 140 Governors Drive, Amherst, MA 01003, USA
b Department of Computer Science and Engineering, IIT Bombay, Powai, Mumbai 400076, India

Available online 16 November 2006

Abstract

Coordinated behavior of mobile robots is an important emerging application area. Different coordinated behaviors can be achieved
by assigning sets of control tasks, or strategies, to robots in a team. These control tasks must be scheduled either locally on the robot or
distributed across the team. An application may have many control strategies to dynamically choose from, although some may not be
feasible, given limited resource and time availability. Thus, dynamic feasibility checking becomes important as the coordination between
robots and the tasks that need to be performed evolves with time. This paper presents an on-line algorithm for finding a feasible strategy
given a functionally equivalent set of strategies for achieving an application’s goals.

We present two algorithms for feasibility improvement. Both consider communication cost and utilization bound to make resource
allocation and scheduling decisions. Extensive experimental results show the effectiveness of the approaches, especially in resource-tight
environments. We also demonstrate the application of our approach to real world scenarios involving teams of robots and show how
feasibility analysis also allows the prediction of the scalability of the solution to large robot teams.
! 2006 Elsevier Inc. All rights reserved.

Keywords: Resource management; Task allocation; Distributed real-time systems

1. Introduction

Collaborating with one another to accomplish a common
goal, for example, searching a burning building for trapped
people, is a promising application for a team of robots.
Human operators may direct the search by teleoperation,
but wireless communications in these situations can be unre-
liable. When a search robot ventures outside a reliable com-
munication range, a second robot can autonomously create
a network to preserve quality of service between the opera-
tor and the search robot. One instantiation of such technol-
ogy constructs a series, kinematic chain of mobile robots
where each of them actively preserves Line-Of-Sight (LOS)

(Sweeney et al., 2002) and intra-network bandwidth. In
the simplest case, two pairwise coordinated controllers, push
and pull are developed for a team of two robots.

The push and pull controllers differ in the way in which
the LOS region is computed. If we call the pairwise robots
as ‘‘Leader/Follower’’, the qualitative difference between
the two configurations is that pull allows the leader robot
to search for an area while ‘‘pulling’’ the following robot
behind it; push allows the follower to specify the search
area of the leader, in effect, ‘‘pushing’’ the leader along.
The task models for these two strategies, namely, the push
and pull controllers themselves, are depicted in Fig. 1.
Here, each robot must run IR obstacle detection and odo-
metric sensor processing tasks, denoted by IRi and POSi,
respectively. In addition, both robots must run a command
processing task, Mi, which takes desired heading and speed
commands and turns them into motor commands. All
these tasks are preassigned to specific execution sites
(robots). In the push configuration, the follower computes
the LOS region in task H1 (standing for the abbreviation

0164-1212/$ - see front matter ! 2006 Elsevier Inc. All rights reserved.
doi:10.1016/j.jss.2006.09.035

q This research was supported in part by DARPA SDR DABT63-99-1-
0022 and MARS DABT63-99-1-0004, NSF grants CCR-0219520, EIA-
0080119 and CNS-0323597.
* Corresponding author.
E-mail address: lihuan@cs.umass.edu (H. Li).

1 Huan Li is now with the Beihang University, Beijing, China.

www.elsevier.com/locate/jss

The Journal of Systems and Software 80 (2007) 962–971

mailto:lihuan@cs.umass.edu


of the path planner), and passes it to task L2, which com-
putes a new movement vector of the leader that maximizes
the search area while keeping the leader within the specified
LOS region. In the pull configuration, the leader robot does
the search, and, concurrently, computes the LOS region in
task L2.

In many cases, different combinations of push and pull
controllers will, however, have the same coordinated search
behavior. A discussion of how applications generate possi-
ble strategies is beyond the scope of this paper. Usually,
applications determine the required type of coordinated
behavior for a team of robots, and generate a set of func-
tionally equivalent strategies. Each strategy consists of a
set of periodic real-time tasks, e.g., sensor data must be
transmitted/processed before they become invalid (which
are indicated as deadlines). Since the control tasks in a
strategy, such as H1, H2 and L2 in the push/pull model,
can be distributed among sites in a team, different task
assignments may lead to different processor workloads
and communication costs. Thus, a strategy that is valid
at the application level may not always be feasible at the
system level. One goal of this work is to find feasible,
schedulable strategies from a set of functionally equivalent
strategies given by the application.

One complicating aspect of this application domain is
that the team is often moving and its size is not fixed. As
robots enter or leave the team, the application must recom-
pute the set of available strategies. Fig. 2 shows a sequence
from a simulation with five robots using push and pull con-
trollers, where robot 0 is the leader searching for the goal –
the square in the lower left of the map. Each time the team
changes, the application must run an on-line algorithm to
determine the task allocation and schedulability of a new
feasible strategy.

If two communicating tasks have to be allocated on dif-
ferent robots, communication over the shared communica-
tion medium happens. To avoid run time contention, the
communication needs to be scheduled as well. Assigning
tasks with precedence relationships in a distributed envi-
ronment is in general an NP-hard problem (Peng et al.,
1997), and even some of the simplest scheduling problems
are NP-hard in the strong sense (Garey and Johnson,
1978). Given temporal and resource constraints, we pro-
pose two heuristic allocation algorithms. The purposes of
those algorithms are: (1) minimizing communication over-
head, and (2) minimizing and balancing the processor
workload, so that the overall schedulability is improved
and optimal coordinated behavior is achieved.

The contributions of this paper are as follows. We
develop an on-line algorithm for finding a feasible control
strategy, given a functionally equivalent set of strategies
for achieving an application’s goals. Specifically, we
propose two simple but efficient algorithms for allocating
control tasks to distributed processing entities. In order
to improve schedulability, communication costs and utili-
zation of processors are minimized. We have performed
extensive evaluations for discovering the properties of the
algorithms. We also exercise it using a case study of a real
world example from mobile robotics to achieve a simple
but efficient allocation and communication scheme for a
team of robots. We believe that our approach can enable
system developers to design efficient distributed embedded
applications even though they possess a variety of temporal
and resource constraints.

The rest of the paper is laid out as follows. In Section 2,
the system model and goal are described. The details of the
allocation and scheduling algorithms are provided in Sec-
tion 3. Section 4 presents the results of evaluations from
simulation. Section 5 analyzes a real-word robotic applica-
tion. Section 6 discusses related work. Section 7 concludes
the paper by summarizing the important characteristics of
the algorithm and discusses future work.

2. System model and our goal

2.1. System and task model

A coordinated team consists of a set of sites (robots),
each having an identical processor. In this paper, we use
site and processor interchangeably. Robots in a team share
a communication medium that allows broadcast communi-
cation between robots. A strategy, which is specified at the
application level, is denoted at the system level by an acy-
clic Task Graph (TG), e.g., tasks graphs for push/pull strat-
egies in Fig. 1. To accomplish a common goal for the team,
a set of functionally equivalent strategies are supplied by
applications.

In a TG, nodes represent tasks (Ti), directed edges
between tasks represent communication relationships (sen-
der/receiver) or precedence (producer/consumer) con-
straints. The amount of communication is denoted as aFig. 2. A sequence of active robots in a robot team.

POS2

H2 L2 M2

M1

IR1

IR2

POS1

H1

IR2

IR1

H2 L2

H1 M1

POS1

POS2

M2

Fig. 1. Tasks in a Leader/Follower team. (a) Push strategy and (b) Pull
strategy.

H. Li et al. / The Journal of Systems and Software 80 (2007) 962–971 963



communication cost attached to the edges. In our model,
all tasks are periodic. Each task is characterized by a period
Pi, Worst Case Execution Time (WCET) Ci, and relative
deadline Di, here, Di = Pi. Periods can be different for differ-
ent tasks. But if the sender and receiver run with arbitrary
periods, task executions may get out of phase, which results
in large latencies in communication (Saksena, 1998). Har-
monicity constraints can simplify the reading/writing logic,
reduce those latencies (Ryu and Hong, 1999) and increase
the feasible processor utilization bound (Sha et al., 1994).
To this end, we design the period of a receiver task as a
multiple of the related sender’s period.

2.2. Our goal

Given a set of sites and a set of functionally equivalent
strategies, our goal is to find a feasible strategy. A strategy
is feasible if and only if: (i) within the LCM (Least Com-
mon Multiple) of task periods, each instance of a task is
scheduled to run at its start time, and complete no later
than its relative deadline; (ii) all constraints, such as prece-
dence, are satisfied.

Based on the nature of the application, some tasks, e.g,
sensor and motor systems, must run on specific processors,
i.e., a particular robot platform. Other tasks, such as con-
trol or computation tasks, however, can be assigned to any
site in the team. To find a feasible strategy, especially when
the temporal and physical resources are tight, the system
needs to:

1. assign unallocated tasks to appropriate processors so
that the communication cost and the workload of each
processor is minimized;

2. determine a feasible schedule for all task instances,
including communication tasks.

The method for constructing communication tasks will
be discussed in Section 3.2. In this paper, we assume the
Leader robot is responsible for computing the feasibility
of all available strategies and deciding which strategy the
team should implement. The decision and execution pro-
cess works as follows. The initial team settings are supplied
by the application. At run time, the Leader determines fea-
sibility and chooses a strategy for the team to execute. The
Leader broadcasts this result to the rest of the team and
waits for confirmation responses. (How these messages
are propagated over the network to the rest of the team
is beyond the scope of this paper.) After this broadcast
phase is finished, the team members start the execution
phase. We set a supervisory period, e.g., a multiple of the
LCM, as the time interval during which the system runs
under the current strategy. Once the supervisory period
ends, the Leader checks if the team requires a new strategy
due to a change in team size or topology, recomputes a new
strategy, broadcasts it to the team, and a new execution
phase begins.

3. Allocation and scheduling algorithms

We now give the details of the allocation and scheduling
algorithms. The notation used in this paper is explained in
Table 1. Here, CCRij is defined as:

CCRi;j ¼
communication cost ðT i ! T jÞ

Ci þ Cj

3.1. Allocation algorithms

Optimal assignment of real-time tasks to distributed
processors is an intractable problem. Two efficient algo-
rithms, Greedy and Aggressive are proposed in this section.
Based on the utilization of each processor and the amount
of communication between tasks, both algorithms attempt
to assign communicating tasks to the same processor with
the purpose of minimizing total communication cost and
thereafter, improving the schedulability. The difference
between the two algorithms lies in whether the communica-
tion from the same processor is clustered or not. A
dynamic incremental utilization threshold is used in both
algorithms. The threshold aims to: (1) balance and mini-
mize the workload of each processor; and (2) avoid viola-
tion of the utilization bound for schedulability purposes.

3.1.1. Greedy algorithm
This algorithm takes into account the amount of com-

munication and computation involved for each pair of
communicating tasks. A decision is made as to whether
these two tasks should be assigned to the same site, depend-
ing on the utilization condition; thereby, eliminating the
communication cost. For schedulability purpose, a thresh-
old t is used to minimize and balance the utilization of each
processor. Initially, t is the maximum utilization value
among all processors that have been loaded with sensor/
motor tasks.

At each step, among all unallocated tasks, the algorithm
selects the one that has the largest communication cost
ratio (CCR), and then attempts to assign it to the same
processor as its sender. For instance, if CCRi,j has the larg-
est value, where Ti ! Tj and Ti is located on site Sx, the
algorithm will attempt to allocate Tj to Sx, based upon

Table 1
Notation used in this paper

Notation Meaning

Ti Task ID
Ci Worst Case Execution Time (WCET) of task Ti

Dn
i Deadline of the nth instance of Ti

En
i Earliest start time of the nth instance of Ti

Sx Site (Processor) ID
ux Utilization of processor Sx

uix Utilization of Sx that Ti is on
Ti ! Tj Precedence constraint between Tj and Ti

CCRi,j Communication Cost Ratio for Ti ! Tj

964 H. Li et al. / The Journal of Systems and Software 80 (2007) 962–971



whether or not the utilization of Sx becomes larger than the
threshold t. For example, let t 0 denote the ‘‘expected’’ uti-
lization of Sx if Tj is assigned to Sx. If t 0 < t, Tj is allocated
to Sx and t keeps the value. Otherwise, the algorithm will
find a site Sl that currently has the least utilization, and
then attempts to assign Tj to Sl. Two cases need to be dis-
cussed under this situation.

Case 1: t 0 > 1. In this case, if Sl is different from Sx, and the
new utilization u0l (after loading the selected task
Tj) is less than 1, Tj is assigned to Sl and the thresh-
old is updated to the max value of t and u0l. Other-
wise, no processor can load the task and the
algorithm fails.

Case 2: t 0 6 1. In this case, we simply assign the task to the
processor with least utilization, and update the
threshold to t 0. Now the new threshold indicates
the new workload demands.

Depending on the threshold update result, if an appro-
priate processor is found, the algorithm moves on to the
next step, using the new threshold. The algorithm is
deemed successful if no task is left unallocated. However,
if no site can be found for the selected task because any
of the processor’s utilization will be greater than 1 after
loading this task, the algorithm fails. The pseudo-code
for the Greedy allocation algorithm and the function of
threshold update is shown in Tables 2 and 3, respectively.

Let N be the number of tasks, M be the number of pro-
cessors. Generally there are MN allocation ways, and find-
ing an optimal feasible allocation so that tasks meet all
physical and temporal constraints is known to be NP-hard.
In our algorithm, the While loop runs in O(N2) time. Con-
sequently, the algorithm runs in O(N2) time.

3.1.2. Aggressive algorithm
Before we introduce a new algorithm, let us first look at

an example depicted in Fig. 3, to illustrate the motivation.
Here, T1 and T2 are preallocated on site S1, T3 is on site S2;
T4, T5 and T6 are under consideration. The numbers
attached to the arrows are communication costs (and
CCRs). Worst case execution time (C) and period (P) of
each task are also shown in the figure. For S1 and S2, the
initial utilization values are: u1 = 0.45, u2 = 0.5,
respectively.

According to Greedy, since CCR2,5 is the largest value,
T5 is considered. If assigning T5 to S1, the same site as
T2, the utilization will become u1 = 0.45 + 0.2 = 0.65 < 1.
Hence, T5 is allocated to S1. Now, let us consider T4 and
T6. Because CCR3,4 has the largest value, task T4 will be
assigned to site S2, the same site as T3, and u2 becomes
0.7. At this moment, no site can load task T6 – the utiliza-
tion will be larger than 1 if loading T6, therefore, the algo-
rithm finally fails.

The second allocation algorithm we propose takes into
account the total communication cost, and selects the task
that has the largest accumulated CCR to do assignment.
For T4 in above example, since the accumulated communi-
cation cost from S1 is greater than that from S2, i.e.,
(CCR1,4 + CCR2,4) > CCR3,4, it is better to assign T4 to
S1, other than S2.

Because the utilization bound is still required for sched-
ulability purpose, once the task is selected, the function of
assignment and threshold update is the same as in Greedy.
To this end, for the Aggressive algorithm, R is the set of
ð
P

iCCRi;j; Sx; T jÞ, where "Ti, Ti 2 F, Ti ! Tj, Site(Ti) =
Sx. Line 6 in Table 2 is changed to: Insert ð

P
iCCRi;j; Sx;

T jÞ to R; and line 13 is changed to: Delete ð
P

iCCRi;j; Sx;
T jÞ from R; line 15 is changed to: Insert ð

P
iCCRi;k;

Table 2
Greedy allocation algorithm

Input: a task graph G = (E,V) with related periods, execution times and communication costs.
Output: a feasible task assignment
Variables: F: allocated task set, I: unallocated task set, U: set of utilization,
t: utilization threshold, R: set of (CCRi,j,Sx,Tj), s.t. Ti ! Tj, Ti 2 F, Site(Ti) = Sx, Tj 2 I
Algorithm 3.1:

1. Initialize U = {uiji = 1,2, . . . ,m}, that is for each processor Si:
ui ¼

P
j
Cj

P j
; T j 2 F ^ SiteðT jÞ ¼ Si;

2. Let t = max(ui), ui 2 U; /* initialize the utilization threshold */
3. If (t > 1),do
4. exit without solution;
5. For all Ti 2 F /* initialize R */
6. Insert (CCRi,j,Sx,Tj) to R, s.t., Ti ! Tj, Site(Ti) = Sx, Tj 2 I;
7. While (I is not empty) do
8. Let Tj be the task that has the largest value CCRi,j out of R;
9. Let u0x ¼ ðux þ Cj

Pj
Þ; /* Ti ! Tj,Site(Ti) = Sx

*/
10. If ððSl ¼ thresholdUpdateðu0x; Sx; T jÞÞ < 0Þ, do;
11. exit without solution; /* cannot find an appropriate processor */
12. Update set F, I s.t., F = F [ {Tj}, I = In {Tj};
13. Delete (CCRi,j,Sx,Tj) from R;
14. For all Tk s.t., Tj ! Tk and Tk 2 I
15. Insert (CCRj,k,Sl,Tk) to R; /* update R, Site(Tj) = Sl

*/

H. Li et al. / The Journal of Systems and Software 80 (2007) 962–971 965



Sl; T kÞ to R, where "Ti, Site(Ti) = Sl, Ti ! Tk. Following
Aggressive, when T4 is considered, it will be assigned to S1

and thereafter u1 = 0.65 + 0.2 = 0.85. Now, if we assign
T6 to site S2, the utilization of S2 becomes 0.9, and the algo-
rithm succeeds. This slightly more complicated algorithm is
shown to be more effective in the sense of higher schedula-
bility in Section 4.

3.2. Making scheduling decisions

After a successful task assignment is found, we need to
find a feasible schedule for all instances of the tasks.
Searching for a feasible schedule for real-time tasks subject
to precedence constraints in a distributed environment is
an intractable problem in the worst case, therefore, we pro-
pose to use heuristic methods. Before we discuss the
approach, first, let us define some terminology.

Earliest start time: The earliest start time of an instance
of a task is derived from the precedence constraints. Let L
be the LCM of task periods. If task Ti has no predecessors,
the first instance is ready to execute at time 0, denoted as
E1
i ¼ 0; and for the nth instance of that task, En

i ¼
ðn% 1Þ & P i, where 1 6 n 6 L/Pi. If Ti has predecessors,

its first instance becomes enabled only when all its predeces-
sors have completed execution. In order to achieve this
condition, the tasks in the original task graph are topolog-
ically ordered. When a task Ti is processed, the lower
bound of E1

i is set to maxðE1
i ;E

1
k þ CkÞ, where "k, Tk 2

Predecessors(Ti). Since we will model communication as a
task if two communicating tasks are on different sites, and
we have harmonicity constraints for all such pairs, initially,
the lower bound of En

i is assigned to ðn% 1Þ & P i þ E1
i .

Communication task: If the pair of communicating tasks
have been assigned to the same site, the communication
cost is avoided; otherwise, communication needs to be
scheduled. Consider Ti ! Tj and m ¼ Pj

P i
, we will construct

m communication tasks; and the kth such task T k
comm has

the following features.

1. Pk
comm ¼ P j. Tj needs to process data sent from one

instance of Ti only once during one period of Tj;
2. Dk

comm ¼ Pk
comm % Cj. This is an upper bound since the

communication should finish its execution no later than
the latest start time of Tj;

3. Ek
comm ¼ Ek

i þ Ci. This is a lower bound because the com-
munication task should begin execution at least after the
completion of the related instance of Ti.

The data sent by the communication tasks for the same
sender task are buffered at the destination site until the
receiver task begin to process them. In this paper, we
assume the transmission is lossless once it is scheduled.

Given a task graph with location information, the
search algorithm attempts to determine a feasible schedule
for all task instances and communication tasks. It starts
with an empty partial schedule as the root and tries to
extend the schedule with one more task by moving to one
of the vertices at the next level in the search tree. It contin-
ues this process until a feasible schedule has been found.
The heuristic functionH is applied to each of the remaining
unscheduled tasks at each level of the tree. The task with
the smallest value is selected to extend the current partial
schedule. Once a task is scheduled, the earliest start times
of all its successors are updated accordingly. Currently,
the potential heuristic functions we use are: (1) Earliest
deadline first: H(T) = Min_D; (2) Minimum earliest
start time first: H(T) =Min_E; (3) Minimum laxity
first: H(T) = Min_L = min(Di % (Ei + Ci)); (4) H(T) =
Min_D + W · Min_E; (5) H(T) = Min_D + W · Min_L;
(6) H(T) = Min_E + W · Min_L. The parameter W is the
weight factor used to adjust the effect of different temporal
properties of the tasks.

4. Simulation results

We conducted several experiments to study the features
of the proposed algorithms, How these algorithms can be
applied to an actual robotics application is discussed in
Section 5. Tasks generated in a directed acyclic graph have
the following characteristics.

Table 3
Threshold update

Processor thresholdUpdate(float t 0, Processor Sx, Task Tj)
/* return the allocation or %1 if fails, Tj and processor Sx is selected,

t0 ¼ u0x */
1. Case 1: t 0 6 t, do /* t 0 is less than the threshold t */
2. Assign task Tj to processor Sx;
3. Update U with the new utilization ux = t 0;
4. Return Sx;
5. Case 2: t 0 > t, do /* t 0 is larger than the threshold t */
6. Find Sl that has the least utilization ul = min(ui),ui 2 U,
7. Let u0l ¼ ul þ Cj

Pj
;

8. Case 2.1: t 0 > 1, do /* processor Sx cannot load Tj
*/

9. If ðSl 6¼ SxÞ ^ ðu0l 6 1Þ, do
10. Allocate task Tj to processor Sl;
11. Update U with ul ¼ u0l;
12. t ¼ maxðt; u0lÞ;
13. Return Sl;
14. Else
15. Return %1; /* cannot find an assignment for Tj

*/
16. Case 2.2: t 0 6 1, do /* u0l 6 t0 6 1 */
17. Allocate task Tj to processor Sl;
18. Update U with ul ¼ u0l;
19. t = t 0;
20. Return Sl;

T1 T2 T3

T4 T5 T6

Site(T2)=S Site(T3)=S112

11
1

1
4

Site(T1)=S

2
(4/13)(1/9)

(1/9)

(2/17)(1/6)
(1/5)

C=2
P=10

C=5
P=20

C=1
P=2

C=4
P=20

C=8
P=40

C=16
P=40

Fig. 3. A simple task graph example.

966 H. Li et al. / The Journal of Systems and Software 80 (2007) 962–971



The computation time Ci of each task Ti is uniformly
distributed between Cmin and Cmax set to 10 and 60 time
units, respectively. The communication cost lies in the
range (CR · Cmin,CR · Cmax), where CR is called Commu-
nication Ratio and are set between 0.1 and 0.4.

To address harmonicity relationships, we set a period
range, ðminP I

i ;maxP
I
i Þ, for each input task Ti (task without

incoming edges), and ð1;maxPO
j Þ for each output task Tj

(task without outgoing edges), where minP I
i ¼ Lower & Ci

and maxP I
i ¼ Upper & Ci, Lower = 1.1 and Upper = 4.0.

To ensure that the periods of output tasks are no less than
those of input tasks, a parameter, mult_factor is used to set
the upper bound of the period for output task Tj:
maxPO

j ¼ mult factor &maxðmaxPI
i Þ, where Ti are input

tasks and mult_factor is randomly chosen between 1 and
5. In order to make periods harmonic, first, we process
input tasks and make their periods harmonic; then we tai-
lor the techniques from Ryu and Hong (1999) to process
output tasks; finally, we use the GCD technique for inter-
mediate tasks to achieve harmonicity constraints. PO

1 ,
which is the smallest period of all output tasks, is calcu-
lated upon the largest period of input tasks (P I

m),
PO
1 ¼ bmaxPO

1 =P
I
mc& P I

m. Other output tasks’ periods are
computed upon PO

1 to achieve harmonicity.
All the simulation results shown in this section are

obtained from the average value of 10 simulation runs.
For each run, we generate 100 test sets, each set satisfyingPn

i¼1ðCi=P iÞ 6 m, where n is the number of tasks and m is
the number of processors. For a given task set, if this con-
dition does not hold, at least one processor utilization will
be larger than 1. Obviously, this does not eliminate all
infeasible task sets because the presence of communication
costs are not considered. However, since feasibility deter-
mination is intractable, if one heuristic scheme is able to
determine a feasible schedule while another cannot, we
can conclude that the former is superior. We use Success
Ratio(SR) to compare the performance:

SR ¼ NTsucc

NT

Here, NTsucc is the total number of schedulable task sets
found by the algorithm, and NT is the total number of task
sets tested. In this paper, SR ¼

P10
i¼1SRi

! "
=10, where

SRi ¼ NTsucc
i =100. The tests involved a system with 2 to

12 processors. Resources other than CPUs and the commu-
nication network are not considered.

4.1. Selecting a scheduling heuristic

In order to eliminate the bias from scheduling heuristic
functions when study the performance of allocation algo-
rithms, we first investigate the scheduling heuristics.

For both Greedy and Aggressive algorithms, we find
Min_E is the best simple scheduling heuristic, while
Min_D + W*Min_E has substantially better performance
than other heuristics including Min_E. This is because ear-
liest start time of each instance of a task encodes the basic
precedence information, and another important factor,
deadline, is also taken into account in Min_D +
W * Min_E. Fig. 4(a) shows the effect of different schedul-
ing heuristic functions when using Greedy algorithm. We
have similar results for aggressive algorithm.

Since Min_D + W * Min_E is a weighted combination
of simple heuristics, we also investigate its sensitivity to
the weight (W) values for various number of processors.
When the weight changes from 0 to 4 (or to 12 if the num-
ber of processors is 2), we see a significant performance
improvement. Because the performance is only slightly
affected when the weight changes from 4 to 30 (or 12 to
30 if the number of processors is 2), we will choose
W = 4 for the following experiments.

4.2. Performance of allocation algorithms

In this section, we evaluate the performance of three
allocation algorithms: Greedy, Aggressive and Random.
The Random scheme will randomly assign an unallocated
task to a processor as long as the utilization is less than
1. Fig. 5 illustrates the results when communication ratio

0

0. 1

0. 2

0. 3

0. 4

0. 5

0. 6

0. 7

0. 8

0. 9

1

2 4 6 8 10 12

S
R

 (
C

R
 =

 0
.1

, #
T

as
k 

= 
12

, W
 =

 4
)

Number of Processors

Min_D
Min_E
Min_L

Min_D+W*Min_E
Min_D+W*Min_Lax
Min_E+W*Min_Lax

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 12 16 20 24 30

S
R

 (
C

R
 =

 0
.1

, #
T

as
k 

= 
12

)

Weight (H(T) = T_D + Weight*T_E)

#Proc = 2
#Proc = 4
#Proc = 6
#Proc = 8

#Proc = 10
#Proc = 12

Fig. 4. Effect of scheduling heuristic and weight (Greedy).

H. Li et al. / The Journal of Systems and Software 80 (2007) 962–971 967



is set to 0.1 (we have similar results for CR = 0.4). As
shown in the graphs, for each instance with different task
set size, Aggressive outperforms Greedy, and Greedy out-
performs random. The gains come from two factors: (1)
the elimination of communication cost, (2) minimizing uti-
lization for each processor. Since Greedy only considers the
individual communication cost at each step, while Aggres-
sive clusters and eliminates communication costs as many
as possible, it is not surprising that Aggressive achieves bet-
ter performance than Greedy.

The other observation is when the communication cost is
heavier, the improvement in performance of Greedy or
Aggressive is larger. Table 4 shows the difference in
improvement of Greedy and Aggressive over Random. For
both Greedy and Aggressive, in most cases, the improve-

ments with CR = 0.4 are much greater than those with
CR = 0.1. When CR = 0.4, the communication introduces
more workload, and therefore, the system has more
resource contention in terms of utilization boundary and
deadline guarantee. So communication costs dictate the
schedulability much more than the case when CR = 0.1.
In contrast to random assignment, our approaches exploit
this important property to direct the allocation assignment,
hence, they work better in the resource-tight environment.

Finally, we find as the number of processors increases,
the improvement for both Greedy and Aggressive tends to
decrease for a given task set. This result further demon-
strates the tighter the resource, the better our algorithms
perform.

4.3. Effect of communication

Allocation approaches attempt to assign communicating
tasks to the same site to minimize the total communication
cost. However, in cases where such tasks have to be placed
on different sites, the communication cost becomes a very
important factor in overall performance. To investigate
the effect of communication, we compare the results with
CR = 0.1 and CR = 0.4 by varying the number of proces-
sors and the number of tasks. The results are illustrated in
Fig. 6.

Fig. 5. Performance of allocation algorithms (CR = 0.1).

Table 4
Improvement of Greedy and Aggressive over Random (Percentage)

# Proc. 4 6 8 10 12

(a) Greedy over Random
CR = 0.1 19.2 15.6 9.7 3.7 2.4
CR = 0.4 17.9 14.6 15.0 13.7 15

(b) Aggressive over Random
CR = 0.1 24.8 20.2 13.2 6.5 3.8
CR = 0.4 22.8 18.3 18.1 16.1 16.3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2 4 6 8 10 12

S
R

 (
W

 =
 4

)

Number of Processors

CR = 0.1, #Task = 12
CR = 0.4, #Task = 12
CR = 0.1, #Task = 16
CR = 0.4, #Task = 16
CR = 0.1, #Task = 20
CR = 0.4, #Task = 20

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2 4 6 8 10 12

S
R

 (
W

 =
 4

)

Number of Processors

CR = 0.1, #Task = 12
CR = 0.4, #Task = 12
CR = 0.1, #Task = 16
CR = 0.4, #Task = 16
CR = 0.1, #Task = 20
CR = 0.4, #Task = 20

Fig. 6. Effect of communication. (a) Greedy and (b) aggressive.

968 H. Li et al. / The Journal of Systems and Software 80 (2007) 962–971



Our results show that when the number of processors is
very limited, e.g., 2 or 3, the performance is almost the
same. This is because in such a situation, it is hard to find
a feasible schedule for both cases. But as the number of
processors increases, the performance for CR = 0.1 is bet-
ter than that for CR = 0.4. This is because each communi-
cation introduces extra workload in addition to the
precedence constraints, if the communicating tasks have
to be assigned to different processors. When the communi-
cation ratio (CR) is set to be larger, the communication
costs are bigger, which have more impact on the earliest
start time of related consumers and the overall system.

5. Application of our algorithms to mobile robotics

In this section, we return to the robotic problem dis-
cussed in Section 1, where two strategies, push and pull,
are given for a team of two robots. In Table 5, the WCET
of tasks are taken from an experimental implementation on
a StrongARM 206 MHz CPU; in Table 6, communication
costs are based on the bytes transmitted using 802.11b
wireless protocol with 11 Mbit/s transmission rate.
Although 802.11b does not allow for real-time transmis-
sion guarantees, by prescheduling communications, med-
ium contention is avoided. The periods are assigned with
220 ms for all sensor tasks, motor drivers and controller
tasks by the application. Although these figures are given
for tasks in Fig. 1, they are compatible to tasks that occur
with more robots. Let us consider the scenario when a third
robot wants to join the team. Since the push and pull con-
trollers are pairwise, there are four possible strategies.

First, let us use the Aggressive algorithm to analyze the
task assignment in each strategy. In this example, since the
accumulated communication cost is considered, the alloca-
tion is the same for all strategies:H1 is assigned to S1,H2 to
S2, H3 to S3, L2 to S2 and L3 to S3.

Next, the algorithm will see which strategies are schedu-
lable under the heuristic Min_D + W · Min_E. To simplify
the analysis, here W is set to 1. The completion times for
tasks on each site are shown in Table 7. The algorithm
finds that, except for {Push, Pull}, denoted as {ph,pl}, all
other strategies are feasible, but with different completion
times (including communication delay). Since multiple
strategies are feasible, the application can use some criteria

to rank the strategies. In this case, if the total laxity is used
as the criterion, the application will choose the {Pull, Push}
strategy, because it has the maximum value.

The application can then use the feasible results when
computing new sets of strategies. For example, if at some
time a fourth robot joins the team, the application immedi-
ately knows that any strategy that contains {Push, Pull}
will not be feasible, since that strategy was already deter-
mined to be infeasible. Therefore, the application can use
the feasibility analysis to prune infeasible strategies as the
team’s size scales. The idea of using the proposed algorithm
to do the scalability analysis is shown in Sweeney et al.
(2003).

6. Related work

Numerous research results have demonstrated the com-
plexity of design for real-time system, especially with
respect to temporal constraints (Gerber et al., 1995; Rama-
mritham, 1996; Ryu and Hong, 1999; Saksena, 1998; Sak-
sena and Hong, 1996). Also the schedulability analysis for
distributed real-time systems has attracted a lot of atten-
tion in recent years (Kim et al., 2000; Palencia and
Harbour, 1998; Palencia and Harbour, 1999; Wang and
Farber, 1999). For tasks with temporal constraints,
researchers have focused on generating task attributes,
e.g., period, deadline and phase. For example, Gerber
et al. (1995) and Saksena and Hong (1996) proposed the
period calibration technique to derive periods and related
deadlines and release times from given end-to-end con-
straints. Techniques for deriving system-level constraints
from performance requirements are proposed by Seto
et al. (1998, 1996). When end-to-end constraints are trans-
formed into intermediate task constraints, most previous
research results are based on the assumption that task allo-
cation has been done a priori. However, schedulability is
clearly affected by both the temporal characteristics and
the allocation of tasks. A more comprehensive approach
that takes into account the task temporal characteristics
and allocations, in conjunction with schedulability analy-
sis, is required.

For a set of independent periodic tasks, Liu and Layland
(1973) first developed the feasible workload condition for

Table 5
WCETs(ms) of tasks in Fig. 1

Task IR1(2) Pos1(2) H1 H2 L2 M1(2)

Push 20 120 35 25 5 20
Pull 20 120 25 25 18 20

Table 6
Communication costs for Fig. 1

IR1(2) !H1(2) Pos1(2) ! H1(2), L2 H1(2) ! L2 H1 ! M1 L2 !M2(1)

Push 0.02327 0.01236, 0 2.979 2.979 2.979(0)
Pull 0.02327 0.01236 0(2.979) 2.979 2.979(2.979)

Table 7
The completion time for all strategies

Strategy {Ph,Ph} {Pl,Pl} {Ph,Pl} {Pl,Ph}

Site 1 195 205.979 222.979 195
Site 2 202.979 208.958 220 205.979
Site 3 210.958 203 230.958 203

H. Li et al. / The Journal of Systems and Software 80 (2007) 962–971 969



schedulability analysis under uniprocessor environments.
Much later, Baruah et al. (1996) presented necessary and
sufficient conditions, namely,U 6 n (n is the number of pro-
cessors) based on P-fairness scheduling for multiprocessors.
Also, the upper bounds on workload specified for the given
schedules, e.g., EDF and RMA, are derived for homoge-
neous or heterogeneous multiprocessor environments
(Andersson et al., 2001; Baruah, 2001; Funk et al., 2001;
Goossens et al., 2002; Goossens et al., 2003; Srinivasan
and Baruah, 2002). All these techniques are for preemptive
tasks and task or job migrations are assumed to be permit-
ted without any penalty. If precedence and communication
constraints exist, these results cannot be directly used.

With regards to the distributed environment, Tindell
et al. (1992), Peng et al. (1997), Abdelzaher and Shin
(2000) and Ramamritham (1995) studied the task alloca-
tion and scheduling problem. In their models, tasks can
have precedence or communication constraints. From this
perspective, their work comes closest to ours. Tindell et al.
describes an approach to solving the task allocation prob-
lem using a technique known as simulated annealing. In
their work, simulated annealing is proven to be an effective
approach to task allocation. However, it may not be
directly used as an on-line algorithm, considering the speed
of the algorithm. Besides, well-balanced allocations are
shown in their paper to result in infeasible solutions, since
a token protocol is used as the message transmission
model, and a high bus utilization gives a high token rota-
tion time, resulting in less schedulable solutions. Our algo-
rithm, however, achieves well-balanced allocation and
minimal message transmission at the same time, giving rise
to the schedulability improvement. By using a branch-and-
bound search algorithm (Peng et al., 1997), the optimal
solution, in the sense of minimizing maximum normalized
task response time, to the problem of allocating communi-
cating periodic tasks to heterogeneous processing nodes is
found. Though the heuristic guides the algorithm efficiently
toward an optimal solution, the algorithm cannot be sim-
ply applied and extended to our environment. The major
differences are: (1) applications require that the decision
be made on-line; (2) we consider a non-preemptive schedule
which is NP-hard in the strong sense even without prece-
dence constraints (Garey and Johnson, 1979), while the
algorithm (Baker et al., 1983) used in their method is for
finding a preemptive schedule; and (3) the precedence con-
straints are predetermined among specific instances of tasks
in their algorithm, while in our approach, this is accom-
plished by the scheduling subject to the precedence con-
straints. In Abdelzaher and Shin (2000), a period-based
method is proposed to the problem of load partitioning
and assignment for large distributed real-time application.
Scalability is achieved by utilizing a recursive divide-and-
conquer technique. Ramamritham (1995) discussed a static
algorithm for allocating and scheduling components of
periodic tasks across sites in distributed systems. How to
allocate replicated tasks is a major issue addresses in the
algorithm. Our task allocation and scheduling algorithm,

however, focuses on the improvement of schedulability
by: (1) using a dynamic increasing threshold to bound
the utilization along with each allocation step; and (2) con-
siders the precedence constraints as soon as possible by set-
ting the earliest start time into the heuristic scheduling
function.

7. Conclusion and future direction

Allocating and scheduling of real-time tasks in a distrib-
uted environment is a difficult problem. The algorithms dis-
cussed in this paper provide a framework for allocating and
scheduling periodic tasks with precedence and communica-
tion constraints in a distributed dynamic environment,
such as a mobile robot system.

Our algorithm was applied to a real world example from
mobile robotics to achieve a simple but efficient allocation
and scheduling scheme for a team of robots. We believe
that this approach can enable system developers to design
a predictable distributed embedded system, even if there
are a variety of temporal and resource constraints.

Now we discuss some of the possible extensions to the
algorithm. First, if the system design does not have pre-
allocated tasks, the heuristic is still applicable. In this case,
the initial threshold is 0. After selecting the first pair of
communicating tasks and randomly assigning them to a
processor, the algorithm can continue to work on remain-
ing tasks as discussed in the original algorithms.

Second, the algorithm can be tailored to apply to heter-
ogeneous systems. If processors are not identical, the exe-
cution time of a task could be different if it runs on
different sites. To apply our approach in such an environ-
ment, first, we can take the worst case communication cost
ratio, which is calculated by the slowest processors for each
pair of communicating tasks, and then we can use these
values as estimates to choose the task to be considered
next. Second, when we select the processor, if the task
can be assigned to the processor that the producer is on,
then we are done; otherwise, we need to consider the utili-
zation and the speed of a processor the same time, e.g.,
compare the utilization from the fastest processors to see
which processor will have the least utilization after loading
the task, and choose the one with the minimum value.
After assigning each task, the threshold will change in a
way similar to the original algorithm.

References

Abdelzaher, T.F., Shin, K.G., 2000. Period-based load partitioning and
assignment for large real-time applications. IEEE Transactions on
Computers 49 (1), 81–87.

Andersson, B., Baruah, S., Jonsson, J., 2001. Static-priority scheduling on
multiprocessors. In: IEEE real-time systems symposium, December
2001. pp. 193–202.

Baker, K.R., Lawler, E.L., Lenstra, J.K., Kan, A.H.G.R., 1983. Preemp-
tive scheduling of a single machine to minimize maximum cost to
release dates and precedence constraints. Operations Research 31 (2),
381–386.

970 H. Li et al. / The Journal of Systems and Software 80 (2007) 962–971



Baruah, S., 2001. Scheduling periodic tasks on uniform multiprocessors.
Information Processing Letters 80 (2), 97–104.

Baruah, S.K., Cohen, N.K., Plaxton, C.G., Varvel, D.A., 1996. Propor-
tionate progress: a notion of fairness in resource allocation. Algorith-
mica 15 (2), 600–625.

Funk, S., Goossens, J., Baruah, S., 2001. On-line scheduling on uniform
multiprocessors. In: IEEE real-time systems symposium, December
2001. pp. 183–192.

Garey, M.R., Johnson, D.S., 1978. Strong np-completeness results:
motivation, examples, and implications. ACM 25 (3), 499–508.

Garey, M.R., Johnson, D.S., 1979. Computers and Intractability.
W.H.Freeman And Company, New York.

Gerber, R., Hong, S., Saksena, M., 1995. Guaranteeing real-time
requirements with resource-based calibration of periodic processes.
IEEE Transactions on Software Engineering 21 (7), 579–592.

Goossens, J., Funk, S., Baruah, S., 2002. Edf scheduling on multiproces-
sor platforms: some(perhaps)counterintuitive observations. In: Real-
Time Computing Systems and Applications Symposium, March 2002.

Goossens, J., Funk, S., Baruah, S., 2003. Priority-driven scheduling of
periodic task systems on multiprocessors. Real-Time Systems 25 (2–3),
187–205.

Kim, T., Lee, J., Shin, H., Chang, N., 2000. Best case response time
analysis for improved schedulability analysis of distributed real-time
tasks. In: Proceedings of ICDCS workshops on Distributed Real-Time
systems, April 2000.

Liu, C.L., Layland, J.W., 1973. Scheduling algorithms for multiprogram-
ming in a hard-real-time environment. ACM 20 (1), 46–61.

Palencia, J.C., Harbour, M.G., 1998. Schedulability analysis for tasks with
static and dynamic offsets. In: Proceedings of the 19th IEEE Real-Time
Systems Symposium, December 1998.

Palencia, J.C., Harbour, M.G., 1999. Exploiting preceding relations in the
schedulability analysis of distributed real-time systems. In: Proceedings
of the 20th IEEE Real-Time Systems Symposium, December 1999.

Peng, D., Shin, K.G., Abdelzaher, T.F., 1997. Assignment and scheduling
communicating periodic tasks in distributed real-time systems. IEEE
Transactions on Software Engineering 23 (12).

Ramamritham, K., 1995. Allocation and scheduling of precedence-related
periodic tasks. IEEE Transactions on Parallel and Distributed Systems
6 (4).

Ramamritham, K., 1996. Where do time constraints come from and where
do they go? International Journal of Database Management 7 (2), 4–
10.

Ryu, M., Hong, S., 1999. A period assignment algorithm for real-time
system design. In: Proceedings of 1999 Conference on Tools and
Algorithms for the Construction and Analysis of System.

Saksena, M., 1998. Real-time system design: A temporal perspective. In:
Proceedings of IEEE Canadian Conference on Electrical and Com-
puter Engineering, May 1998. pp. 405–408.

Saksena, M., Hong, S., 1996. Resource conscious design of distributed
real-time systems an end-to-end approach. In: Proceedings of 1999
IEEE International Conference on Engineering of Complex Computer
Systems, October 1996. pp. 306–313.

Seto, D., Lehoczky, J.P., Sha, L., Shin, K.G., 1996. On task schedulability
in real-time control system. In IEEE real-time systems symposium,
December 1996. pp. 13–21.

Seto, D., Lehoczky, J.P., Sha, L., 1998. Task period selection and
schedulability in real-time systems. In IEEE real-time systems sympo-
sium, December 1998. pp. 188–198.

Sha, L., Rajkumar, R., Sathaye, S.S., 1994. Generalized rate monotonic
scheduling theory: a framework for developing real-time systems.
Proceedings of the IEEE 82 (1), 68–82.

Srinivasan, A., Baruah, S.K., 2002. Deadline-based scheduling of periodic
task systems on multiprocessors. Information Processing Letters 84
(2), 93–98.

Sweeney, J., Brunette, T., Yang, Y., Grupen, R., 2002. Coordinated teams
of reactive mobile platforms. In: Proceedings of the 2002 IEEE
Conference on Robotics and Automation, Washington, DC, May
2002.

Sweeney, J., Li, H., Grupen, R., Ramamritham, K., 2003. Scalability and
schedulability in large, coordinated, distributed robot systems. In:
Proceedings of the 2003 IEEE Conference on Robotics and Automa-
tion, May 2003, Taipei, Taiwan.

Tindell, K., Burns, A., Wellings, A., 1992. Allocating hard real-time tasks:
an NP-hard problem made easy. Real-Time Systems 4, 145–165.

Wang, S., Farber, G., 1999. On the schedulability analysis for distributed
real-time systems. In: Joint IFAC–IFIP WRTP’99 & ARTDB-99, May
1999.

H. Li et al. / The Journal of Systems and Software 80 (2007) 962–971 971


