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Abstract— We propose an algorithm for planning the velocity
of a vehicle on a pre-planned path applicable to differentially
steered, zero turn radius, mobile robots with symmetric mass
distribution about the turn axis. This approach uses estimates
of path curvature to maintain tracking precision in the vehicle’s
heading controller. The longitudinal speed of the vehicle is
restricted to limit the bandwidth of the input forcing function
(the path). As a result, we guarantee bounds on the driving
frequency in the heading controller so that the robot stays close
to the intended path. The result allows the robot to use the
full performance envelope of the drive motors and provides a
principled means of regulating precision and time performance
during path traversal. Evaluation of the technique is conducted
in simulation and in real experiments on the UMass uBot.
Results indicate that the proposed velocity planner can make
full use of motor performance and reduces path tracking error
and traversal times relative to constant velocity plans.

I. INTRODUCTION

In general, nonholonomic constraints couple path plan-
ning, control, and motor constraints and make mobility
control an interesting and difficult computational problem.
This problem is exacerbated by complex under-actuated kin-
odynamic systems and sophisticated approximate techniques
that exist for computing motor plans (see Section II). In this
paper, our focus is path tracking for an important class of
nonholonomic platforms. In particular, we address wheeled
platforms with a symmetric mass distribution around the turn
axis and differential steering capable of zero radius turns .
We call this class of nonholonomic vehicle kinodynamically
transparent because the system can track arbitrary paths—
even those with path discontinuities—if longitudinal velocity
is controlled. For example, large path curvature requires the
vehicle to slow in order to keep current vehicle heading
aligned to the local path tangent and paths with low (or zero)
curvature can exploit the full performance envelope of the
vehicle’s drive motors.

For these types of systems, path planning and path track-
ing can be completely decoupled. As a result, the control
of longitudinal velocity along a reference path completely
determines the driving frequency of inputs to the heading
controller. Consequently, lag in the heading controller sub-
jected to this time varying reference input is a nearly exact
proxy for tracking precision. Therefore, path planners can
attend exclusively to collision avoiding motion plans without
concern for kinematic motion constraints and trackability and
path trackers can consider tracking precision exclusively for a
given path and regulate it by controlling longitudinal velocity.

Fig. 1: The uBot platforms: uBot5 (left) [1] and uBot6
(right) [2] developed at the UMass Laboratory for Perceptual
Robotics (LPR).

In this paper, we consider tracking precision over a given
path plan in such systems. Given knowledge of heading
control dynamics, path curvature can be used to limit lon-
gitudinal velocity so that the heading controller can keep
up with the planned path. The approach uses the exact
dynamics of the heading controller and the published motor
torque constants for the differential drive to create a high
performance longitudinal velocity plan.

II. RELATED WORK

Path planning and tracking has been an important area of
research which has received an enormous amount of attention
in robotics. Practical approaches to path planning include
potential field methods [3], [4], [5], and contemporary prob-
abilistic techniques such as PRM and RRT [6], [7], [8],
[9]. These techniques (and others) could conceivably be the
source of paths for the proposed tracker. In this work, we
make no recommendations about which is best in this regard
although there are interesting research questions concerning
the coupled behavior.

Several techniques have been proposed that consider the
fully coupled planning and tracking problems that incorpo-
rate dynamics and kinodynamic constraints into integrated,
dynamically feasible paths [10], [11]. These techniques
can be considered heuristic generalizations of the proposed
approach. However, the proposed approach has the added
virtue that precise models of heading control dynamics are
available for this simple drive configuration and exact motor



dynamics as published by motor manufacturers can be used
(Section III-B).

Other curvature-based velocity constraints have been pro-
posed and implemented [12], [13], [14], [15] and a frame-
work based on the probability of collision was demonstrated
by [16]. However, these approaches use extremely conserva-
tive velocity constraints and hence do not exploit the full per-
formance envelope of the platform. Promising results were
shown by Ferguson et al. in the DARPA Urban Challenge
with “Boss,” Carnegie Mellon University’s autonomous SUV,
in which curvature was used to match to elements of a
set of velocity profiles consisting of constant, linear, linear
ramp, and trapezoidal profiles [17]. A second-order spline
is generated using the best match velocity profile. However,
these approaches do not aim to maximize the vehicle velocity
when conditions permit. The approach discussed in this paper
provides a control theoretic and dynamical systems account
that results in a continuous velocity controller, exploits the
full range of the actuator performance in the mobile platform,
and yields velocity profiles consistent with the dynamics of
DC motors.

The experiments in this paper employ the uBot platform
(shown in Fig. 1), a perfect example of a kinodynamically
transparent mobile platform. However, there are many other
examples of platforms in the literature that can use this
approach directly as well, including Herb [18], the Segway
RMP[19], and Golem Krang [20] among others. With some
extensions, the approach may also be generalized to other
zero turn radius platforms as well [21], [22], [23], [24]
especially as the capacity for longitudinal velocity on these
platforms increases [25].

III. VELOCITY CONSTRAINTS

In the longitudinal velocity controller proposed, a “path”
is considered to be a function defining the heading of the
vehicle θ(s) that varies with distance along the path s.
Such a path drives the heading controller with non-stationary
reference heading captured by the path curvature dθ/ds.

A. Heading Control Dynamics - Performance Limitations

The heading is assumed to be controlled using a PD feed-
back controller implemented using a pair of gains, which is
a 1-DOF second-order system subject to changing reference
headings. Heading control for differential steer, zero turn
radius vehicle yields a single degree-of-freedom dynamical
system represented as a second-order differential equation,

θ̈ +
B

I
θ̇ +

K

I
θ = 0 (1)

where K and B represent the proportional and derivative
gains in the heading controller and I is the scalar moment
of inertia around the rotation axis. It is assumed that K,
B, and I are constant. As a result of this assumption, ωn

=
√
K/I , or natural frequency of the heading controller, is

constant. Equation 1 describes the dynamics of the second-
order harmonic oscillator using the homogenous form of the
characteristic equation for the controlled plant. For this kind
of system, the phase response as a function of ω/ωn is fully

Fig. 2: Phase lag of the second-order heading controller
with respect to the dimensionless forcing frequency (ω/ωn),
where ωn is the natural frequency. The corresponding phase
lag φ is bounded by limiting ω̄ (red line) given the damping
ratio ζ. In this figure, ω̄ = 0.25, therefore, for a critically
damped system with ζ = 1.0, φ ≈ −0.4 rad.

determined by the well-known phase lag diagram illustrated
in Figure 2 [26], where ζ = B/(2

√
KI).

The ability of the heading controller to track a reference
path θ(s) depends on the temporal frequency of the driving
function, that depends, in turn, on the vehicle’s longitudinal
velocity:

ω =
dθ

dt
=
dθ

ds
∗ ds
dt
. (2)

The chain rule in Equation 2 relates the product of the
path curvature dθ/ds prescribed by the path planner and the
longitudinal velocity of the platform ds/dt to the driving
frequency ω = dθ/dt of the forcing function for the heading
controller.

As the ratio of forcing frequency ω to ωn approaches 1,
the phase lag in the system, φ, approaches −π/2 (illustrated
in Figure 2). Given a specified value for ζ = B/2

√
KI in the

heading controller, the limiting value of the ratio ω̄ = ω/ωn

corresponds to amount of phase lag, φ, that is tolerated by
the control design. From Equation 2, the maximum command
velocity for a specified maximum phase lag and a discrete
point in the path si becomes:

vi =
ds

dt

∣∣∣∣
si

=
ω̄ ωn

(dθ/ds)|si
(3)

B. Motor Performance Limitations

Heading control and longitudinal acceleration is ultimately
constrained by motor performance, in particular, by the no
load speed ω0 [rad / sec] and the stall torque τs [Nm] of the
wheel motors. These parameters are reported in most DC
motor catalogs. Given values for these two parameters, the
torque available, for a given motor speed, ωc is calculated
by using Equation (4).



Fig. 3: The construction of a velocity profile: the geometry of a hypothetical step function path shown in a top-down view
above. Also shown is the final velocity profile which is executable by the robot and the construction of such profile using
CBMV (Algorithm 1, Step 1) and VR (Algorithm 2, Steps 2-3).

τ = τs − ωc
τs
ω0

(4)

The maximum available torque at each velocity is used
to compute the maximum available platform acceleration.
In addition, we can use ω0 and the wheel radius, rwheel

to obtain the maximum velocity of the platform, vmax =
ω0rwheel [m/s]. Note that in real systems vmin is often
necessary to overcome the motor and floor contact stiction.
vmax and vmin can be seen as the two horizontal lines in
Figure 3.

Additionally, experiments in Sections IV and V are exe-
cuted on a balancing robot, which imposes additional restric-
tions on the application of motor torque. These platforms
can not accelerate instantaneously. For example, in order to
decelerate, the drive wheels must first accelerate to get in
front of the center of mass before deceleration torques can be
applied. Our experiments compensate for this restriction by
reserving torque by changing the motor models, the details
of which are beyond the scope of this paper.

C. Curvature-Based Maximum Velocity

Given a path θ(s) and a sampling interval ∆s , the
Curvature-Based Maximum Velocity (CBMV) algorithm (Al-
gorithm 1) computes the maximum velocity the robot can

consider at any point along the path given the ω̄ specification.
The heading function θ(s) is computed at the sample interval
along the path.

Algorithm 1 Curvature-Based Maximum Velocities (CBMV)

1: procedure CBMV(θ(s),∆s)
2: {θ0, θ1, ..., θn} ← Sample(θ(s),∆s)
3: for each θi where i 6= {0, n} do
4: dθ/dsi ← (θi+1 − θi−1)/(2∆s)

5: vi ←

{
vmax if dθ/ds = 0,

ω̄ ωn/(dθ/ds)i otherwise

6: V ← {v0, v1, ..., vn}
7: return V

Algorithm 1 estimates the curvature using finite differ-
ences and assigns the curvature-limited longitudinal velocity
at each sample point in the path.

Consider a test path (pictured in Figure 3) sampled at
∆s = 0.01 m for the infinite curvature right angled turn
where two linear path segments of length 4.0 m and 2.5 m,
respectively, are separated by an infinite curvature, 90 degree
right turn. The straight line segments have zero curvature and
the point of intersection between these two segments is a



unit step heading change reference of magnitude −π/2 and
therefore, introduces infinite curvature dθ/ds at this point.
All other positions on the path have zero curvature. The
fine dotted line in the velocity profiles show the result of
Algorithm 1 for the unit step heading path. It defines a
maximum velocity at each point along the path. Because
dθ/ds = 0 for the two straight sections of the path, Algorithm
1 sets the maximum velocity to vmax and the point with
infinite curvature to ≈ 0.

However, the output of Algorithm 1 does not yield ex-
ecutable velocities—the acceleration limits of the motors
preclude the aggressive accelerations resulting from this test
path. To make the plan executable, the ability of the wheel
motors to generate accelerations must be considered. This is
the role of the motor models and the Velocity Reachability
Algorithm.

D. Velocity Reachability Algorithm

The Velocity Reachability (VR) algorithm (Algorithm 2)
is used to guarantee that all planned velocities are reachable
given motor constraints. A curvature-based velocity planned
at position i + 1 may not be reachable from the state of
vehicle motion at position i given the acceleration limits of
the robot. We assume that the robot has an initial velocity
and goal velocity of v0, vn = 0, though VR can be modified
to accept arbitrary v0, vn.

Algorithm 2 Velocity Reachability (VR)

1: procedure VR(V , ∆s, vmin, vmax)
2: V ← {v0, v1, v2, ..., vn}
3: v0, vn ← 0
4: for i← 0 to n− 1 do
5: a← amax|vi
6: v′ ←

√
v2i + 2a∆s

7: vi+1 ← min(vi+1, v
′, vmax)

8: for i← n to 1 do
9: a← amax|vi

10: v′ ←
√
v2i − 2a∆s

11: v∗i−1 ← max(min(vi−1, v
′), vmin)

12: V ∗ ← {v∗0 , v∗1 , ..., v∗n}
13: return V ∗

To calculate the velocity at i + 1 given i, we use the
standard equations of motion:

v2i+1 = v2i + 2a∆s (5)

where a is the acceleration limit computed from the motor
model. At each sample position i along the path, VR guar-
antees that,

vmin ≤
√
v2i − 2a∆s ≤ vi+1 ≤

√
v2i + 2a∆s ≤ vmax.

(6)
Velocities are planned, subject to (6) using the two-pass

VR algorithm (Algorithm 2), which takes the curvature-
based velocity limits V , the sampling interval ∆s, and the
maximum and minimum velocity, vmax and vmin as input

and generates the maximum achievable (reachable) velocity
plan V ∗. The results of the forward and backwards iterations
of the VR algorithm are shown in Figure 3. Since the
accelerations are based on the motor models of the system,
the resulting velocity plan is reachable and can be used as
velocity commands for the robot during execution.

The final Phase Lag Bounded Velocity (PLBV) planner,
used to generate and plan velocities given a path function
θ(s) and ω̄, is done by executing Algorithm 1 and 2 (CBMV
and VR) in sequence.

IV. SIMULATOR RESULTS

Our proposed approach PLBV, was tested on a dynamic
simulation of the uBot platform in Gazebo. For both the sim-
ulation and real robot results, we measure the performance of
PLBV in total traversal time and integrated error. Integrated
is defined as an approximation of the area between reference
path function θref (s) and the actual path taken by the robot
in the cartesian space.

The path used to compare the two velocity controllers is
shown in Figure 5(a). A zero-radius, unit step heading change
of −π/2 is followed by one and a half cycles of a sinusoidal
path that incorporates a range of changing path curvatures.
The end of each plot in Figure 4(a) indicates the completion
of this test path. The solid red plot in the middle of
Figures 4(a) and 4(b) presents the same configuration of the
PLBV regulated system with ω̄ = 0.25. Figure 4(a) compares
this result to other values of ω̄ and Figure 4(b) compares
its performance to the commonly used constant velocity
controller. As expected, different values for ω̄ in Figure 4(a)
produce different integrated errors and overall traversal times
as well. As ω̄ is increased, higher velocities are permitted
for curved paths at the expense of increased phase lag in
the heading controller, and consequently, more cumulative
error occurs as traversal times decrease. Figure 4(b), shows
that the performance of the PLBV controller is superior
to the constant velocity controller. In order for a constant
velocity controller to traverse the path in the same time as the
PLBV controller (ω̄ = 0.25), it must accept ≈ 0.2 m2 more
cumulative error over the trajectory. Similarly, in order for
the constant velocity control to achieve the same cumulative
error, it must go much slower, taking over 19 seconds longer
to traverse the path.

V. RESULTS ON THE UBOT-5 PERSONAL ROBOT

We implemented the PLBV algorithm on the uBot-5 robot
(shown in Figure 1). The robot is a 13 DOF balancing mobile
manipulator [1]. Precisely the same version of the algorithm
that was used in simulation was also used in the experiments
conducted on the real robot. The wheel motors for the uBot-
5 platform have no-load speeds ω0 = 596.90 rad/s and
stall torques τs = 531 mNm. The natural frequency of the
integrated robot was measured empirically by driving the
heading controller using a sinusoidal input whose frequency
is increased until the phase lag of the response is observed to
be −π/2. In this operating condition, the driving frequency is
approximately equal to the natural frequency ωn. The result



(a) (b)

Fig. 4: Simulated Gazebo Experiments: (a) Integrated error for three different values of ω̄= {0.1 , 0.25, 0.5} (b) Integrated
error for 2 constant velocities where vconst = 0.34 m/s and a particular parameter for velocity control where ω̄ = 0.25 have
similar traversal time and vconst = 0.24 m/s has similar integrated error with the velocity control parameter ω̄ = 0.25

(a) Path deviations of both controllers (b) Integrated error along path (c) Velocity-control profile example

Fig. 5: uBot-5 Experiments: (a) illustrates the reference path and each controller’s most-deviated path (b) shows the
integrated error in the five trials for each of the controllers. The shaded region around the lines represent the mean and one
standard deviation. (c) illustrates a single run of the velocity controller with ω̄ = 0.25 and associated velocity profile.

of this empirical process indicates that the natural frequency
of the as-built heading controller is approximately ωn = 1.05
[rad/sec].

Controller Time (s) Integrated Error (m2)
PLBV (ω̄ = 0.25) 63.64 0.177
CONST (v = 0.33 m/s) 66.73 2.053
CONST (v = 0.15 m/s) 267.93 0.183

TABLE I: Proposed PLBV vs. CONST on uBot

Five trials were conducted on the test path (Figure 5(a))
for the proposed PLBV algorithm and the commonly used
constant velocity controller CONST. Figure 5 and Table I
report the experimentally measured difference in cumulative
error and traversal time between the PLBV and CONST. In
order for the constant velocity controller to yield the same

traversal time as the PLBV plan it must make large deviations
from the path, which increases the risk of colliding with
obstacles in the environment. These deviations are depicted
in Figure 5(a) where we can see large deviations from the
path where there is high curvature content. Note that the
PLBV plan has relatively low deviation at these points. The
difference of path tracking accuracy is shown in Figure 5(b)
where we see that the constant controller accumulates a much
larger integrated error. Additionally, due to the instability
introduced by the high driving frequency, there was a large
variation in tracking error over the 5 trials.

The constant velocity controller with v = 0.15 m/s is
able to traverse the path with the same cumulative error as
the PLBV plan with ω̄ = 0.25. However, this resulted a
traversal time over four times that of the proposed PLBV



plan. Conversely, for equivalent traversal times, the constant
velocity control had to run at v = 0.33 m/s and at that
speed, it incurred approximately ten times the cumulative
error. In contrast, Figure 5(c) the PLBV plan executed veloc-
ities from −0.05 m/s to +0.9 m/s without compromising
precision more than permitted by the ω̄ = 0.25 specification.
Figure 5(c) also illustrates the effects of balancing on the
platform’s ability to accelerate. At local maxima in robot
velocity, it must accelerate before it is able to decelerate
in order to advance the base ahead of the platform’s center
of mass. It is evident from Figure 5 that constant velocity
control is incapable of tracking a path plan with high
curvature accurately unless a very low constant velocity is
used and that the PLBV velocity plan can do significantly
better. This robot data on the test path agrees with the data
gathered from our simulations, however, the differences in
performance are much higher in the real robot experiments,
which suggests that our method is robust enough to handle
the additional uncertainties present in a real system.

VI. CONCLUSION AND FUTURE WORK

The control theoretic motivations underlying the PLBV
approach have proven to provide significant insight into
the relationship between heading control and longitudinal
velocity and inform relatively simple methods for exploiting
the platform’s dynamics which is also more graceful than
constant velocity controller. The result is a simple and more
fundamental form of dynamic guidance for velocity control
than already exists in the literature.

To evaluate the approach, we chose to compare results
only for implementations that pre-plan the paths and ve-
locities. However, our laboratory implementations re-plan
when errors occur and, therefore, introduce interesting issues
that we wish to explore regarding the impact of various
methods for velocity control on the total computational
loads they represent in this context. This becomes even
more important in applications in dynamic and only partially
modeled environments.
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