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ABSTRACT

BRIDGING THE GAP BETWEEN AUTONOMOUS
SKILL LEARNING AND TASK-SPECIFIC PLANNING

FEBRUARY 2013

SHIRAJ SEN
B.Sc., INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR
M.Sc., INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR
M.Sc., UNIVERSITY OF MASSACHUSETTS AMHERST
Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Roderic Grupen

Skill acquisition and task specific planning are essential components of any robot
system, yet they have long been studied in isolation. This, I contend, is due to the
lack of a common representational framework. I present a holistic approach to plan-
ning robot behavior, using previously acquired skills to represent control knowledge
(and objects) directly, and to use this background knowledge to build plans in the

space of control actions.

Actions in this framework are closed-loop controllers constructed from combina-
tions of sensors, effectors, and potential functions. I will show how robots can use
reinforcement learning techniques to acquire sensorimotor programs (skills). The
agent then builds a functional model of its interactions with the world as distribu-

tions over the acquired skills. In addition, I present two planning algorithms that can

vii



reason about a task using the functional models. These algorithms are then applied
to a variety of tasks such as object recognition and object manipulation to achieve

its objective on two different robot platforms.
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CHAPTER 1
INTRODUCTION

Humans interacting with their environment show a remarkable amount of dexter-
ity. Humans do not have a single solution to a particular problem; rather over time,
develop a suite of alternate solutions that can achieve the same task. Dexterity can
be defined as the “ability to find a motor solution for any external situation, that is,
to adequately solve any emerging motor problem correctly, quickly, rationally, and
resourcefully” [8]. Bernstein argued that dexterity lies not in the motor act itself, but
is revealed by its interaction with the changing external conditions, with uncontrolled

and unpredictable influences from the environment.

Dexterity requires quickness of wits (noticing the environment has changed),
quickness of resolution (quickly finding a solution), and qualitative quickness of move-
ments. This requires an agent to be able to anticipate (have forward models) the effect
of its actions and be able to react accordingly to achieve its objective. Robotics re-
searchers working on dexterous robots usually focus their attention on only one aspect
of the problem, rather then considering a holistic approach to the problem of achiev-
ing dexterous mobility and manipulation in robots. This dissertation is an attempt
towards achieving dexterous behavior in robots. I build upon the work of Stephen
Hart of learning skills autonomously by an intrinsically motivated agent [44] to show
how robots can organize its knowledge about the dynamics of the world in a manner

that supports high-level reasoning and knowledge re-use. I will show how agents can



act in the presence of uncertainty to quickly come up with multiple competing motor

solutions that achieve its objective.

1.1 Representation for Planning and Control

An intelligent agent must reason about its own sensorimotor skills, and about the
relationship between these skills and goals under run-time conditions. This requires
the agent to represent knowledge about its interactions with the world in a man-
ner that supports reasoning. Since the early 1970s, the Al and robotics community
has been concerned with the design of efficient representations for automated robot
control. However, most of these representations tend to tackle only one part of the

problem—making either the control or planning problem easier.

One solution to the hybrid planning and reactive control problem is to adopt
a two-level model: at the upper level, a planner sequences a set of subgoals to be
achieved based on the available knowledge and the task at hand; at the lower level,
a controller achieves these goals while dealing with the environmental contingencies
(e.g., [36, 3]). The controller must be able to satisfy planned goals to the highest de-
gree possible while trading off between multiple low-level goals (e.g., avoid joint limits
and collision). It is, however, a challenge to develop a complex controller that juggles
goals at both levels—the two control problems are treated as if they are uncoupled

when that is clearly not the case.

Frustrated by such problems, many researchers are exploring other techniques for
generating intelligent behavior without explicit representations of the kind used in
symbolic AI. One of the most influential examples is the work of Brooks who outlined
an approach to building robots based on the subsumption architecture [11, 12, 13].

Brooks stated that intelligence is an emergent property of certain complex systems



and can be generated without explicit representations and abstract reasoning. He
stated that ‘real” intelligence is situated in the world, and not in disembodied systems
such as theorem provers or expert systems. In this proposition, intelligent behavior
arises as a result of the agent’s interaction with the environment and not based on
some prior logic provided by a third party. This is also the basis for the knowledge
structure and representation that I am presenting. The knowledge accumulated by the
robot is not based on prior models constructed by third party knowledge engineers. It
is based on models of the environment learned by the robot by direct interaction with
the world. The model learned thus establishes only those aspects of the world that
support controllable chains of inference. This naturally structures problem solving by
ignoring parts of the state space that are not relevant to the robot or are expensive
or difficult to discern. In Chapter 3, I present a knowledge representation grounded
in robot’s own interactions with the world combined with a control framework that

supports multi-objective control.

1.2 Real World Planning

Planning has been closely related to the implementation of artificial agents since
the birth of AL It has been long understood that an intelligent agent needs to have
some way of automatically designing a course of action that achieves its objective.
Over the years, increasingly sophisticated planning algorithms have been developed
for motion and manipulation planning. LaValle [70] and Ghallab et al. [38] present a
comprehensive survey of the various planning techniques that have been developed for
planning under uncertainty for both real and simulated worlds. Despite the immense
volume of work, most researchers would accept that the problem is not solved. The
underlying problem seems to be the expressiveness and precision of forward models

in robotics as well as the complexity of searching a very high dimensional state space



efficiently.

The classical planning problem of finding a finite sequence of actions that will
transform a given initial state to a state that satisfies a goal specification, is com-
putationally difficult. In the traditional context, in which actions are represented
using the STRIPS representation and the initial and goal spaces are specified as
lists of literals, even restricted versions of the planning problem are known to be
PSPACE-complete [32]. Although the complexity bounds sound disheartening, the
worst case hardness result does not mean that computing plans is impossible. This

is because many domains offer additional structure that can ease planning difficulties.

The focus of research on planning is often the design of efficient algorithms for use
in structured domains that encode only the essential features. A lot of effort has been
put into constructing implicit encodings of problems in the hope that the entire state
space does not need to be explored to solve the problem. By assuming a task-specific
representation, general-purpose planning algorithms have been designed and proved
to be correct and complete in some cases [33, 17]. Logic frameworks are popular for
constructing such representations, since they can represent certain kinds of planning
problems very compactly. Also, the resulting representation is rational in that it
produces outputs and explanations. Although these systems represent a significant
technical breakthrough, the logic framework is severely limiting when applied to the
real world. For example, these representations do not address the possibility that
complete state knowledge about the world might not be available to the agent. Thus,
it isn’t possible to plan a complete sequence of actions from the present state to the
goal in advance. Moreover, the world can change independently of actions taken by
the agent, or there can be many situations when the planning agent isn’t completely

certain about the state of the world. A planner needs to adapt to run time feedback



by taking task directed exploratory actions that yield better predictions and improve

planning performance while contributing simultaneously to improved forward models.

1.3 Contributions

This dissertation makes two main independent contributions to the field of robotics.
A third contribution arises from collaborative work with others in the Laboratory for
Perceptual Robotics (LPR) related to autonomous skill acquisition and demonstra-

tions of empirically derived knowledge from these skills.

o Skill-based Representation : 1 present a functional representation for organizing
a robot’s knowledge about its environment in terms of its interaction statistics.
The representation utilizes a uniform description of state, which is not specific
to a particular task; it is domain general and applicable over a wide variety of
tasks. Actions in this framework are closed-loop controllers constructed from
combinations of sensors, effectors, and potential functions. In earlier work,
Hart [44] showed that sensorimotor programs (schemas) can be acquired using

intrinsically motivated reinforcement learning [4].

I will show how a robot can utilize this uniform state representation to learn
probabilistic models of its environment. The models capture the functional
description of the environment as spatial and temporal distributions over the
state of acquired skills. While the presented representation is rather general,
my work will concentrate on models pertaining to rigid objects. Chapter 3 will
show how such a model can be learned and used for various tasks such as object

recognition and manipulation.

o Tusk-specific Planning : 1 will present two algorithms for planning in the space of

control actions, supported by the functional object models. Chapter 4 presents



a planner that uses an information theoretic metric for planning tasks. However,
the tasks that such a planner can perform is limited to those where the goal is to
reduce uncertainty over state (For example, object recognition), as opposed to
achieving a particular goal state. Chapter 5 presents a planner that alleviates
this problem by allowing both recognition and goal state achievement tasks.
I will show how a planner, in the presence of partial state information, can
interact with the world in a task directed manner that leads to the discovery of
control knowledge and dynamics of the world and concurrently uses the gained

knowledge to make progress towards the goal.



CHAPTER 2
BACKGROUND

This chapter presents a survey of various representations that have been presented
in the literature for skill learning and planning. We conclude with a description of
our representational foundation for states and actions that will be used for model-
ing control knowledge and allows for seamless integration of probabilistic planning

schemes with low level controllers.

2.1 Knowledge Representation

The problem of integrating low-level controllers with high-level planners intro-
duces significant representation difficulties. This is because the requirements of con-
trollers are different from those of traditional planners. Traditional closed loop con-
trollers require high-bandwidth access to feedback from the environment. Deliber-
ating about the outcomes of an action requires representing these possible outcomes
and simulating their effects under run-time conditions. In practice, this is impossible
for two reasons. First, all the information necessary for an accurate simulation may
not be available. In real environments, many parameters are unknown or hidden and
are not under the agent’s control. Second, even if the robot has access to complete
information for simulation, it might be so computationally expensive that the real
world may change faster than that of the simulation. As a consequence, representa-
tions for planning often rely on a level of abstraction that is incompatible with the

high-fidelity, high-bandwidth feedback required for control. In the next few subsec-



tions, I will present an overview of various representations that have been developed

for performing planning and control.

2.1.1 Logic Based Representation

Logic based representations have been used in robotics and Al to represent plan-
ning and control problems. The first application of planning, in fact, was robot
control: the STRIPS [33] was used to generate plans, i.e., sequences of abstract high
level actions for the robot SHAKEY [82]. STRIPS takes a symbolic description of the
world and the desired goal state, a set of action descriptions that include the initial
and final conditions associated with an action, and then attempts to find a sequence
of actions that will achieve the goal. The algorithm uses a rather simple means-ends
analysis, which involves matching the post-conditions of an action against the desired

goal.

Sacerdoti [94] represented the problem domain as a hierarchy of abstractions in
which successively finer levels of detail are added to an abstract plan. The planner
achieves significant increases in performance by first searching for a solution in the
most abstract level of problem description, a simplified view of the problem space in
which unimportant details are ignored. He further showed how the same logical rep-
resentation can capture the essential non-linear nature of plans [95] by representing
a plan as a partial ordering of actions in time. By avoiding premature commitments
to a particular order for achieving the subgoals, this representation can easily and
directly deal with problems that are otherwise very difficult to solve. However, as it
turned out, it is difficult to transform abstract actions into motor controllers flexible
enough to meet the goals of the abstract action given partial information and uncer-

tainty in the real world implementation.



Saffiotti et al. [96] presented an approach for integrating planning and control
based on control schemas that link physical movements to abstract action descrip-
tions. Their approach is focussed on performing planning using the framework of
multi-valued logic. Multi-valued logic can be viewed as logic of graded preference,
where the truth value of a proposition P in a world can be interpreted as the util-
ity, or desirability, of being in that world from the point of view of P. It represents
degrees of truth on a numeric scale, thus providing an ideal framework to merge
planning, typically expressed in symbolic terms, with control, typically expressed in
numeric terms. They start from the definition of basic units of control that map each
state to a measure of preference (or desirability function) over the space of all possi-
ble commands. The idea here is that different commands can generate, to a greater
or a lesser extent, the same type of movement. Control schemas are composed by
combining the corresponding desirability functions via the operators of multi-valued
logic. These control schemas were then “lifted” to the level of abstract actions in an
environment that can be used by a planner. Here, they used two key notions: that of
“embedding” in the environment, by anchoring the agents internal state (used by the
control schemas) to external objects (used by the planner) through perception, and
contextual structure provided by the circumstances of execution. A control schema,
together with a set of object descriptors and a contextual condition, is packaged into a
behavior. Behaviors play the role of situated actions: they indicate which movements
should be performed under what circumstances and with respect to which objects—
bridging the gap between abstract action descriptions and physical control. Saffiotti
and his colleagues showed how this logical representation can be used for automatic

planning of complex behavior.

A robot that uses logical reasoning can sound highly compelling, since all the

agent will then require is a representation of the knowledge expressed in logic and a



theorem prover as part of the problem-solver. However as Wooldridge [118] points
out, to build an autonomous robot with such capabilities, two important problems

need to be solved:

e The transduction problem: Translating the real world into an accurate and

adequate symbolic representation.

e The representation/reasoning problem: How to represent information about
complex real-world entities and processes symbolically, and how to reason based

on partial information.

The failure to find solutions to these problems led to development of control tech-

niques that don’t depend on logical representations meant specifically for planning.

2.1.2 Configuration Space Representation

One of the most widely used representation for performing planning and control
is to represent the problem in the configuration space (C-space)—the space of all pos-
sible configurations of the robot. The planning problem then reduces to finding a

solution in this space from the start state to the goal state.

Lozano-Pérez, Mason, and Taylor presented the preimage planning framework [75]
to address manipulation planning problems in configuration space with bounded un-
certainty. The most popular method within the preimage planning framework involves
performing a backward search from the goal until it reaches the starting state. Al-
though this sounds simple enough, the set of possible motion commands is infinite.
Erdmann [31] showed that the preimage in general cannot be computed by any al-
gorithm. It was later shown that the 3D version of preimage planning, in which the

obstacles are polyhedral is NEXPTIME-hard [16].
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This has caused research in this area to shift from exact, complete algorithms
to sampling-based algorithms, such as Rapidly-exploring Random Trees (RRT) [69],
that can rapidly find a feasible solution at the expense of completeness. However,
these algorithms (RRT-Connect [65], Multipartite RRT [120]) waste a lot of their
computational resources by randomly sampling a part of the state space that might
not be relevant to the task. RRTs have been used extensively for various motion plan-
ning tasks for humanoids [64] and aerial-robots [61]. Miyazawa [77] used RRTs to
accelerate planning the motion of fingertips for graspless manipulation. Zucker [120]
presented a variant of the algorithm called Multipartite RRT (MP-RRT) that sup-
ported planning in unknown or dynamic environments. The algorithm combined the
strengths of RRT with a biased sampling distribution and showed how branches from
previous planning iterations can be used to re-plan quickly in dynamic environments.
All these approaches were however constrained by the fact that the goal and initial
state needed to be in the configuration space of the robot. Diankov [25] presented
a planning algorithm called BiSpace that could plan in complex, high-dimensional
spaces by simultaneously exploring multiple spaces (e.g., Cartesian and configuration
space). Lately, this framework has been extended to handle a variety of constraints
in manipulation planning including constraints on the pose of an object held by a

robot, or constraints for following workspace surfaces [7].

Burridge et al. [14] showed how feedback motion planning can be considered as a
sequential composition of locally valid feedback policies, or funnels, which takes an
agent with a broad set of initial conditions to the goal region. The weakness of this
approach was the difficulty of computing the region of applicability, or preimage, for a
controller. Tedrake combined convex optimization-based techniques with randomized
sampling of state space to create sequences of stabilizing controllers that probabilis-

tically covers the reachable area of a state space ensuring that the goal state can be

11



reached from all initial conditions [108].

All these techniques reduce the problem of planning and control to a configuration
space problem and search for a solution in that space. It is however a challenge to

represent information about the world and task exclusively in configuration space.

2.1.3 Representation Free Planning and Control

Brooks [11, 13] proposed a reactive approach to robot control without explicit
representations. He decomposed the problem into layers corresponding to levels of
behavior. Within this setting, he introduced the idea of subsumption wherein the
goals of higher-level layers subsume the roles of the lower, more reactive layers when
they wish to take control. This approach employs neural mechanisms of inhibition
and suppression to construct behavior as the structured interaction between prim-
itive behaviors. Layers are able to substitute (suppress) the inputs to other layers
and to remove (inhibit) the output from lower layers. The resulting architecture was
one that could simultaneously make progress toward multiple, potentially conflicting
goals in a reactive fashion, while giving precedence to higher priority goals. The
ability of the robot to achieve its high level goal while still attending to its low level
goals crucially depends on the programming of the interface. Brooks was successful
in building robots for exploration, foraging and tracking using the above approach.
However, subsumption-based robots cannot perform tasks requiring means-end rea-
soning. This is because the knowledge required for deliberation is not explicitly stored
in the various layers. The focus of this approach is directed towards achieving robust
behavior instead of correct or optimal behavior. Even then, the robustness depends

critically on coefficients of inhibition and suppression.
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From the above discussion, it is evident that none of the above representations
allows a robot to seamlessly learn from interaction and plan using the learned mod-
els. The configuration space representation is good for geometric, non-contact based
planning and control. On the other hand, logical representation provides powerful
mechanisms for planning, but none for perception and autonomous learning. These
challenges have led lately to the development of a representation that doesn’t adhere
to just logic or configuration. Instead of modeling the actions of the robot, it models
the logic of discrete events generated by closed-loop control interactions (dynamical
systems) in the context of partially observable systems and segments objects in the
world in terms of the actions they support or afford. This functional representation
has its roots in cognitive psychology and also provides the inspiration for the rep-
resentation that I am presenting. The next section presents a survey of functional

representations.

2.2 Functional Representation

Psychologist J. J. Gibson introduced the term affordance as “all action possibil-
ities latent in the environment” [39]. He suggested that affordances are objectively
measurable in relation to the actor and therefore dependent on their capabilities.
Gibson presented an interactionist view of perception and action that focussed on
the information that is available in the environment. According to this framework,
entities surrounding an actor become useful objects by virtue of the actions that the
actor can apply to them. The term affordance refers to the property of the environ-
ment that leads to a specific kind of interaction. It describes the attributes of an

environment that support abilities/skills in the agent.

Following the formulation of the theory of affordances, there has been a lot of work

done by the Ecological Psychology community that aimed at showing that humans
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can perceive whether a specific action can be executed successfully in the environment.
The hypothesis was that humans do not necessarily perceive objects (For example,
box, stairs, ball), but the action possibilities (For example, liftable, climbable, throw-
able) in the world. Although the number of objects in the world can be infinite, the
number of possible interactions is limited and is dependent upon the perceptual and

motor capabilities of the human.

Warren’s stair-climbing experiments [116] showed that organisms perceive their
environment in terms of intrinsic or body-scaled metrics, not in absolute or global
dimensions. He computed a constant, called © proportions, that depend on specific
properties of the organism-environment system. For example, a human’s judgement
of whether he can climb a stair step is not determined by the global dimensions of
the height of the stair step, but by its ratio to his leg-length. Oudejans et al.’s [86]
study of street-crossing behavior and perception of critical time-gap for safe crossing
shows that not only static properties of the organism, but also its dynamic state is

important when deciding on actions.

Representing knowledge about the world in terms of affordances provides a pow-
erful and computationally efficient way for an agent to encode its experiences. The
use of affordances within autonomous robotics is mostly confined to behavior-based
control, and their use in deliberation remains a largely unexplored area. This is not a
coincidence, but indeed a consequence of the shortcomings in Gibson’s theory. Gibson
didn’t view affordances as a representational unit that can be used by computational
processes. Since the formulation of the theory of affordances by Gibson [39], a great
deal of work has been done to formalize this concept in a manner that can be modeled
computationally. Specifically, Stoytchev [106, 105] and Fitzpatrick [34] showed that

affordance learning can be used to differentiate objects in the course of interaction
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with the environment. Stoytchev’s and Fitzpatrick’s work uses affordance as a higher
level concept that a developing cognitive agent learns about by interacting with ob-
jects in the environment. Montesano et al. [78] presented an affordance based model
using Bayesian networks that linked actions and their effects to object features. In
the next two subsections, I present a summary of two state-of-the-art projects that

uses an affordance based representation for planning and control.

2.2.1 MACS - Affordance Inspired Robot Control

The MACS (Multi-Sensory Autonomous Cognitive Systems) project [97] presented
an affordance based robot control architecture that can be used for both learning [26]
and planning [73]. In their formalization, an affordance is an acquired relation be-
tween a certain effect and an (entity, behavior) tuple, such that when the agent applies
the behavior on the entity, the effect is generated. Here the entity and effect descriptors
are high dimensional features whose relationship through a pre-programmed discrete
action is learned by the agent. Furthermore, they show that given a symbolic de-
scription of entity-action-effects, one can use standard propositional logic planner for
reasoning. Though their research shows the benefits of using affordance based rep-
resentation for planning and how such affordances can be learned, high-dimensional
features employed to learn the relationships between the entity and effects are dis-

connected from the symbolic representations of actions and effects used for planning.

2.2.2 Object Action Complexes

Geib et al. [37] proposed a solution to the representational discontinuity by pairing
actions and objects in a single representation that captures high-level action repre-
sentations in terms of low-level control representations. This approach supports both
learning behavior and reasoning about them. In the simplest case, the system has sen-
sors, 3 = {01,09,...,0,} where each sensor ¢; returns an observation obs(o;) about

some aspect of the world. The execution of a robot-level motor program may cause
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changes to the world that can be observed through subsequent sensing. However,
in re