Intrinsically Motivated Self-Supervised
Deep Sensorimotor Learning for Grasping

Takeshi Takahashi

Abstract— Deep learning has been successful in a variety of
applications that have high-dimensional state spaces such as
object recognition, video games, and machine translation. Deep
neural networks can automatically learn important features
from high-dimensional state given large training datasets. How-
ever, the success of deep learning in robot systems in the real-
world is limited due to the cost of obtaining these large datasets.
To overcome this problem, we propose an information-theoretic,
intrinsically motivated, self-labeling mechanism using closed-
loop control states. Taking this approach biases exploration
to informative interactions—as such, a robot requires much
less training to achieve reliable performance. In this paper, we
explore the impact such an approach has on learning how to
grasp objects. We evaluate different intrinsic motivators present
in the literature applied appropriately in our framework and
discuss the benefits and drawbacks of each.

I. INTRODUCTION

Deep learning has been successful in a variety of fields
such as object recognition [1], video games [2], Go [3],
and translation [4] because of its ability to learn important
features and generalize to previously unseen data. Recent
advancements in convolutional neural networks have shown
great improvements in image recognition tasks over tradi-
tional hand-crafted features thanks to large-labeled datasets
[1]. However, deep learning has had limited success in
robotics because of challenges present in robotics domains.
These challenges include:

1) Collecting large labeled datasets is non-trivial. A hu-

man typically hand labels training data.

2) Data is expensive in terms of time and energy because
the robot executes exploratory actions whose conse-
quences are observed in real-time in order to obtain
samples.

To address these challenges, self-supervision techniques
have been used to supply labels automatically without human
experts [5], [6]. However, these techniques still require a
large number of training samples to achieve reliable per-
formance. We propose using active learning techniques to
reduce the number of training samples necessary to achieve
high levels of performance. We evaluate the effectiveness of
using these techniques to decrease training time in learning
how to grasp objects with a real robot using self-supervised
deep learning. The overall approach is outlined in Figure 1
and is explained in Section III.

This paper provides two contributions in self-supervised
deep sensorimotor learning:

The authors are with the Laboratory for Perceptual Robotics, Col-
lege of Information and Computer Sciences, University of Mas-
sachusetts Amherst MA 01003, USA. {ttakahas, lanighan,
grupen}@cs.umass.edu

Michael W. Lanighan

Roderic A. Grupen

Unlabeled

. Train Dee|
Sensorimotor P

Intrinsic
Neural Network

Samples U Motivation
fy
x=(z95s) €U

[ELEIC]
Sensorimotor
Samples L
L=LU (x"y)

Self-label
y = {1,0}

Execute
@17 with x*

Fig. 1: Intrinsic motivation selects the most informative
sample x* to query. The robot self-labels the action outcome
using the status of closed loop controllers. Variables in this
figure are defined in Section III.

1) We show that active learning techniques can reduce the
training time and the number of samples required to
learn deep sensorimotor skills.

2) We evaluate different intrinsic motivators for active
learning and discuss the benefits and drawbacks of
each.

II. RELATED WORK

Minh et al. proposed Deep Q networks (DQNs) to solve
simple video games using raw images as an input. By
combining reinforcement learning (RL) with convolutional
neural networks and a replay-memory they effectively learn
policies in domains with discrete actions [2]. This approach
is not directly applicable to robotics domains as the action
space in robotics is continuous. Lillicrap et al. extended DQN
for problems with continuous action space [7] by applying a
Deterministic Policy Gradient [8] with actor and critic net-
works to efficiently train policies. Their results in simulation
are competitive to those of optimal control policies. However,
real robot experiments were not performed. Unfortunately, it
is not the case that networks learned in simulation easily
transfer to real robot systems despite millions of training
simulations over hundreds of hours [9].

We use a method called self-supervision that allows a
robot to explore and evaluate its own training experiences.
Self-supervision is similar to work reported by Pinto and
Gupta that uses hundreds of hours of grasp data and heuristic
supervision functions for labeling [5]. Recent work by Levine
et al. incorporate a similar predefined metric to self-supervise
a network built to predict the probability of grasp success
[6]. Our approach differs in the way that self-supervision is
determined using the state of closed-loop controllers. This
captures the robot’s evaluation of its own actions through

direct closed-loop interactions with the environment. The
output of our network corresponds to a predicted status
of these primitive closed-loop controllers. We use active
learning techniques to intrinsically motivate the robot to
select more effective training trials. In comparison, Pinto et
al. use random grasps and importance sampling to collect
data [5] while Levine et al. use random and on-policy data
collection [6].

We believe that intrinsic motivation (see [10], [11] for
surveys) is one of the most important components needed
for robots to learn skills autonomously in the real-world.
Intrinsic motivations have been extensively investigated in
psychology [12], [13]. Barto et al. applied intrinsic motiva-
tion to reinforcement learning to learn skills by defining a
reward function that captures the intrinsic motivation [14].
Intrinsically motivated learning and active learning share
many attributes [15] and we will use the terms interchange-
ably. Active learning aims to select a subset of unlabeled data
points to train a system efficiently (see [16] for a survey).
Active learning is often used when randomized exploration is
inefficient and querying labels is costly in supervised learn-
ing tasks. Existing active learning techniques scale poorly
to high-dimensional data [17]. Recently, researchers have
started investigating applying active learning techniques to
convolutional neural networks [18], [19], [20]. Gal et al. in-
troduced deep Bayesian active learning in image recognition
applications to select unlabeled data efficiently [18]. They
use Dropout layers to better approximate the uncertainty
present in the network. Batch-query active learning algo-
rithms have also been proposed for convolutional networks
in classification tasks that query a large portion of unlabeled
images at the same time [19], [20]. However, a robot can
query only one sample at a time, so the batch active learning
method is not easily applicable. The use of active learning
methods for self-supervised deep sensorimotor learning in
robotics has not been well studied.

III. PROBLEM FORMULATION

The overall approach is summarized in Figure 1. Using
intrinsic motivation, a sample z* from an unlabeled sen-
sorimotor sample set U is selected. z* is executed by a
robot, which observes the outcome in real-time and self-
labels the outcome . The status of closed-loop controllers
alone provides a method for self-supervision in which a
robot labels its training experiences autonomously. This new
labeled sample (z*,v) is used in addition to previously
obtained labeled outcomes L to train a deep neural network
which learns the affordance (the possibilities for action) of
the current environment. The network predicts controller
state given visual observation, proprioceptive state of the
robot, and controller goals.

A. Self Supervision via Closed-loop Controller Dynamics

This paper uses a deep convolutional network whose
purpose is to predict controller status. The inputs of the
network are multi-modal sensory inputs, while the output is

predicted control state. By using the control state of closed-
loop motion primitives the dimensionality of the output
layer of the network is reduced. This representation encodes
interactions between the robot and the world and can be used
to predict whether given multi-modal sensory inputs afford
a particular control action. In other words, this encoding
supports expectations for control actions that yield (or afford)
reliable tactile interactions. The particular choice of learning
the activation of a closed-loop grasp primitive is due to the
convergence results demonstrated in [21] for regular convex
prismatic objects.

We employ the Control Basis formulation to enumerate
closed-loop perceptual control policies. These controllers
¢|2, consist of a combination of potential functions (¢ € ®),
sensory inputs (o € X), and motor resources (7 € T) [22].
Controllers achieve their objective by following gradients in
the potential function ¢(o) with respect to changes in the
value of the motor variables Aw,. Gradients are described
by the error Jacobian J = 9¢(c)/Ou, and references to
low-level motor units are computed as Au, = —kJ#¢(0),
where J# is the Moore-Penrose pseudoinverse of J [23].

The interaction between the embodied system and the
environment is modeled as a dynamical system, allowing
the robot to evaluate the status of its actions as the time
varying state of a closed-loop system. The time history of
the error state (¢, @) is a strong surrogate for the state of the
interaction with an unknown environment [21], [24]. The
state description * at time ¢, is derived directly from the
state (¢, é) of the controller using a simple classifier:

E |¢| > €1
1: |¢| S €1 and |¢| S €9 (l)
0: |¢| <€ and |p| > €2

Y (9l7) =

where €1 and €5 are small constants. The neural network pre-
dicts this controller state. Thus, the network is a hyperpara-
metric function approximator f,r(40) : X — P(y"(¢[2))
where © € X is (z,g,s), z is the sensory input from the
environment, g are controller goals, and s is proprioceptive
feedback of the robot. In this study, we assume l7m;_ oo |q§\ <
€1, and the neural network predicts either 1 or 0. To simplify
notation, we use ~y instead of 77 (¢|?) in the rest of the paper.

B. Intrinsic Motivators for Active Learning

Let v € T be a label (I' = {1,0}) the robot assigns
given z, £ = {(z;, %)}Lﬂl be a set of labeled sensorimotor
samples, and U = {z;} ﬁll be a set of unlabeled sensorimotor
samples. Initially £ is small and the robot will collect labeled
pairs to train f,. In this paper, we want to minimize the
training cost to achieve reliable performance of f,. The
cost can be the number of actions (queries) or training time
(computation time + query time). The action the robot selects
will query x; € U to obtain ~;. The query process takes
time because the robot needs to execute exploratory actions
whose consequences are observed in real-time. The robot
selects the most informative sample x; for a query based
on its intrinsic motivation. We investigate the behaviors

of the following intrinsic motivators: Maximum Entropy
[16], Maximum Entropy with Monte Carlo (MC) Dropout
[18], Maximum Entropy with Input Noise, Expected Error
Reduction [25], and a Hybrid approach that combines
the Maximum Entropy and Expected Error Reduction
approaches. To form a baseline, we use a Random approach
commonly used in state of the art learning approaches.

1) Maximum Entropy (ME): The Maximum Entropy
method selects samples based on which ones are most
uncertain [16]. As entropy measures uncertainty, the most
uncertain sample x* will be selected. £* is computed with

x* =argmax(Hp[l'|x])
zeU

= arg max(E, |9, (—log(Py(v|7)))
zeU

where 6 denotes parameters of a neural network f,. The
approximate cost of this method is (’)(W%) where F' is cost
of feed-forward computation of f, and entropy computation
given one batch, and B is a batch size for the feed-
forward computation. The computation will be expensive
if we evaluate all samples in |U{|. In the case of robotics
domain, the goal of the controller g is continuous, and |U|
can be infinite. To approximate ||, we use Us, a subset of
U, for this evaluation. We create Us by randomly sampling
from U. The resulting equation is

x* =arg max(Hy|[['|x]) (2)
ftel/{s

The cost of this method is O(MgF) where Mg = [Ibés\]
is the number of batches for computing entropy.

2) Maximum Entropy with MC Dropout (MEDO): To
better estimate the uncertainty of f,, we can compute the
entropy by making use of dropout layers in the neural
network [18]. A sample x* is selected with

* 1 ~
x _arfer;l?)((ﬁ Z(Hgn[l“lw])) 3)

n

where 6, follows the dropout distribution and N is
the number of iterations to estimate the distribution.
This finds the sample that is on average most uncertain
over different parameter settings. This is because each
feed-forward-pass generates slightly different outputs given
the same input as some neurons in the dropout layers
are randomly disabled. Gal er al. demonstrated how this
approach performs better than using the maximum entropy
on the MNIST dataset [18] regarding the number of queries.
However, this approach incurs a high cost O(NMgpF)
and requires the additional implementation of dropout layers.

3) Maximum Entropy with Input Noise (MEIN) : Instead
of using dropout layers to estimate the output distributions,
they can be estimated by adding noise to the controller goals.

With this method a sample z* is selected using

1
2* = arg max (NE%:H(;[N:U = (z7g+en,s)]> ()

rEUS

where ¢,, is noise and N, is the number of ¢,,. Each element
€.n Of €, follows Uniform(0,r;) where r; is a small
constant. This method estimates uncertainty in the model
without relying on the use of dropout layers. This is a good
approximation of actual behavior as actions performed by a
robot are stochastic. With this approach, the output of the
neural network should be robust against small amounts of
noise. The cost of this method is O(N.MpF).

4) Expected Error Reduction (EE): Expected error reduc-
tion [25] has not been investigated for use in deep convo-
lutional neural networks. While previous methods estimate
the current uncertainty of the model, the expected error
reduction estimates the future model uncertainty by retrain-
ing the model. This method is computationally expensive
because it needs to retrain the neural network considering all
possible outcomes. To compute this efficiently, we compute
the average of future performance over U., a subset of U
instead of using Y. We also use only one sample (z,7) to
train the network for computing the future entropy instead
of using £ U (z,7) where x is a sample we are examining
and ~ is a possible outcome. The most informative sample
x* is selected with

T :arfbgegjtx (— glgg (P(“Y@’x)HGI(awO) o)

N 1
Holen =7 2 Hownllla ©)
€ x/ €U,

The cost is O(|Us||T|(MaG + M.F')) where |I'| denotes
the number of labels, G is cost of the back propagation,
Mg is the number of iterations, and M, = (%1 is the
number of batches for computing entropy. Although this is
still an expensive method if the number of labels is large,
we only consider two outcomes in our manipulation task.
Thus, it is still feasible to compute this intrinsic motivator
in a reasonable time frame.

5) Hybrid Approach (H): Another possible measure is to
combine both the maximum entropy and the expected error
reduction approaches. The expected error reduction approach
uses the expected future entropy, fIGI(rw)’ the estimation
of which may not be accurate. To compensate for this,
we measure the difference between the current entropy and
the expected future entropy. The computational cost is the
same as the expected error reduction approach. The most
informative sample z* is selected using

@7 = argmax (He[Fx] — max (P(vl97x)He|<m,v))>

)

6) Baseline: Random (R): The random approach ran-
domly samples = from .

x* =x;» where i* ~ Uniform(1,|U]) (8)

The random approach does not consider the current state
of the model, and does not bias exploration to informative
areas. However, the complexity of this approach is O(1). As
such, the robot can execute more actions within a specific
time frame compared to the other approaches.

IV. EXPERIMENTS

To investigate the benefits of intrinsic motivation and to
evaluate the different approaches outlined in Section III-
B, we conduct experiments on a manipulation task where
a robot learns to grasp novel objects. The objective is to
predict grasp success given depth images, controller goals,
and proprioceptive states while minimizing the amount of
training required.

A. Robot

We use the uBot-6 [26] in the experiments. The uBot-6
robot platform (shown grasping an object in Figure 2) is
a 13 DOF, toddler-sized, dynamically balancing, humanoid
mobile manipulator equipped with an Asus Xtion Pro Live
RGB-D camera, designed and built at the Laboratory for
Perceptual Robotics. The robot uses Robot Operating System
(ROS) middleware [27]. To grasp objects, the robot uses
two controllers (REACH and COMPRESS) in sequence
(Figure 2). This sequence pre-grasps then grasps an object in
an antipodal configuration. REACH is a bimanual endpoint
position controller and COMPRESS drives the end effectors
together in search of a reaction force.

B. Network Architecture

The network predicts the outcome of grasping events.
The network uses input z = (z,g,s) where z is a depth
image (size is 120 x 160), s is a head angle, and ¢ =
(OrefrsOrefrs Fref) Orefr, = (L,YL, 2L)robot is a left hand
reference position (pre-grasp position) in the robot frame,
and Oref, = (TR,YR,ZR)robor 1S a right hand reference
position in the robot frame, and F..y is the reference force.
We use a fixed F,..; in this experiment. The goal of REACH
controller is (arefL,arefR) and the goal of COMPRESS
controller is Fj..r. The network architecture used in this
paper is illustrated in Figure 3. We use a depth image as
sensory input. In addition we use controller goals and robot
state as additional inputs. This allows us to generalize over
different robot-environment configurations. We use Adam
[28] to update the weights of the network with a learning
rate o« = 1074,

C. Dataset

In order to statistically compare the outcomes of each ap-
proach, we first collect a training dataset of grasps on a fixed
set of objects. We investigate each intrinsic motivator over
this dataset. During data collection, the robot was presented

Fig. 2: Grasping pipeline: The REACH controller and the
COMPRESS controller compose the REACH-COMPRESS con-
trol program. (a) shows the initial pose of the robot as the
robot activates the REACH controller. (b) shows the REACH
controller converges to an antipodal pre-grasp. The robot then
activates the COMPRESS controller. (¢) After COMPRESS
controller converges, the object is grasped.

Leaky Relu
Convolution
Max Pooling

Leaky Relu
Convolution

Leaky Relu
Convolution

Leaky Relu

Convolution
Max Pooling

Input ch 1 32 32 102 192 384

Outputch 32 32 192 192 384 128

Size 7x7 3x3 3x3 33 3x3 3x3

Stride 2 2 1 2 1 1
Goal of the

controller

Dense + Leaky Relu + Dropout
Dense + Leaky Relu + Dropout
Dense + Leaky Relu
Softmax

Proprioceptive
State

512 256 128 2

Fig. 3: Network Architecture. Relu is a rectifier linear unit.

with training objects at different positions and orientations in
the scene during each trial. Additional objects were added to
the scene as distractors that were either placed out of reach,
on top of other objects, or occluded areas in the scene. For
each trial, the robot performs a grasping action consisting of
REACH and COMPRESS actions with a randomly set head
angle. Pre-grasp (REACH) goals are selected for the left and
right end effectors by sampling x;, ~ Uniform(0.25, 0.43),
yr ~ Uniform(0.29, 0.31), z;, ~ Uniform(0.1, 0.5) with
TR =2L,YR = —YL, 2R = Z1. We also used goal positions
specified by authors.

After the robot has reached the specified pre-grasp posture
the COMPRESS controller ¢|7 is executed until |¢| < ¢ is
satisfied, indicating that the controller is no longer making
progress towards its target. The asymptotic control state
~v becomes the label that is assigned to the whole grasp
session—each of the saved images inherits this label. If |¢| <
€2, we consider this as a successful grasp (v = 1). We use a
quadratic error function ¢ that computes an error between the
magnitude of the reference force and the magnitude of the
current force. If the end effectors does not move (|¢\ <€)
and does not satisfy |¢| < e, we consider this as a failure
grasp (y = 0). This can also happen when the controllers
violate safety conditions (for example two hands are too
close), and the controllers stop.

Each grasping trial is completed by calling a homing
procedure to reposture the robot. The data collection process

SV Ve sV ot 4o "I
B A Al Zo| A o] el | 2]

Fig. 4: Selected grasp examples consisting of RGB (top) and depth (bottom) that resulted in v = 1 (a) and v = 0 (b). The
robots hands slipped along the surface of the object in some of the examples in (b).

(a) (b)

Fig. 5: (a) shows training set consists of varying objects with
a number of distractors such as blocks, bats, and toys. (b)
shows test set.

consisted of 512 grasping trials. Each trial took about 30
seconds. 385 grasp experiences are used as training input
to a deep convolutional neural network while 127 grasp
experiences are used as testing data. Novel objects were
used for testing. We saved depth images and head angles
at 10 Hz. Each grasping trial consists of a couple hundred
of samples. We select 20 samples from each grasping trial
for training and 10 samples for testing to make a large
dataset. The overall dataset used 7700 training samples and
1270 testing samples. Each sample contains a depth image,
controller goals, a proprioceptive state, and a label the robot
assigned. Figure 4 show examples of the outcome states of
the closed loop controller. Figure 5 shows objects used in
the experiment.

D. Experimental Settings

To investigate the behavior of each intrinsic motivator, we
compare the area under the learning curve (ALC) of each
intrinsic motivator in three conditions: the number of actions
(Q4), a 30-second-query-time + computation time (Qs30),
and a l-second-query-time + computation time (Q1). The
query time is equivalent to the robot action time (executing
a grasp action, labeling the outcome, and going back to the
initial posture). In each experiment we randomly draw five
samples of v = 1 and five samples of v = 0 as £. We treat
the rest of samples as U. After each query, we update the
neural network and remove the queried sample from ¢/ and
add it to £. Each experiment continues until |£| = 1000.
Before experiments, we explored the hyper-parameters of
the algorithms. Empirically we found using |U;| = 200 to
yield good performance. Due to the existence of uncertain
samples that do not carry much information, performance

does not increase even with larger |U;|. We suspect that these
uninformative samples were generated by stochastic robot
actions. We use N = 30, N. = 30, [U,| = 64, Mg = 1,
B =128, r; =0.03, Mp =2, and M, = 1.

V. RESULTS AND DISCUSSIONS

For each experiment we ran ten episodes of each intrinsic
motivator with a different initial £ sampled from our dataset.
If we use the entire training dataset as L, the accuracy of
the network asymptotes to 85.6%. The mean learning curves
are shown in Figures 6, 7, and 8 for each experimental
setting. For each we compute the area under the learning
curve (ALC) to evaluate the performance of the intrinsic
motivators. The results of the ALC computation are shown
in Table II. The higher the ALC is, the more efficient and
accurate a method is. To determine statistical significance
between each pair of methods, we used a randomization test
with p < 0.05. The results of the statistical significance tests
are shown in Table I. An entry in a table cell indicates
that the approach of the row is statistically significantly
better performing than the approach in the column. Entries
indicate which setting is statistically significant, number of
samples (Q4), query time of 30 seconds (Q30), and query
time of 1 second (@1). The absence of an entry indicates the
performance of the pair is statistically insignificant.

A. Analysis: the number of samples (Q a)

When performance is evaluated solely using the num-
ber of queries, all intrinsic motivators perform statistically
significantly better than random, as seen in Table I and
Figure 6. However, there is no statistically significant dif-
ference in performance between the intrinsically motivated
approaches. Although no statistically significant difference in
performance among intrinsic motivators exist, the mean of
the learning curve of the Expected Error Reduction is slightly
lower compared to the other intrinsic motivators. This is
likely due to the difficulty this method has of estimating
the impact future actions has on entropy.

Figure 6 shows that the Maximum Entropy with MC
dropout (MEDO), the Maximum Entropy with Input Noise
(MEIN), and the Hybrid approach (H) reached 70% accuracy
more than 30 samples earlier than the Maximum Entropy
(ME), which indicates that these approaches work better
with fewer number of samples. This is likely due to the
fact that initially the labeled set does not cover a large

space of the domain. As such the exploration ME undertakes
initially will not provide good guidance, as any sample is
potentially informative. As MEDO and MEIN better estimate
the true uncertainty by applying small perturbations, they
will guide the system better initially. Although the expected
error reduction itself trails other intrinsic motivators, when
combined with ME in the Hybrid approach performance
exceeds ME as it biases the system towards areas that will
bring more information in the future.

B. Analysis: Computation time and Query time (Q3o, Q1)

When computation time is dominated by execution time
(as in the Q3¢ experiment) every intrinsic motivator outper-
forms Random as seen in Table I and Figure 7. There is
no statistical significance in the performance among ME,
MEDO, and MEIN in ()39. However, when execution time
does not dominate computation time, as in the ()1 experiment
Random outperforms the Expected Error Reduction and
Hybrid approaches (see Figure 8). This is because Random is
able to query more samples in the equivalent time. Similarly,
ME outperforms all other methods in ; due to its short
computation time coupled with the guidance it provides.

The computation time shows that MEDO and MEIN took
about 30 times more than ME. As we described in Section
II-B, the cost of ME is O(MpF), MEDO is O(NMFgpF)
and MEIN is O(N.MpF). With N = 30 and N, = 30
the result matches our cost analysis. The cost of expected
error reduction and hybrid approaches is O(|Us||T'|(MaG +
M.,F)). The time to compute these approaches is more than
200 times that of ME (as expected since |U| = 200, |T'| = 2
Mg =1, and M, = 1).

When computation and execution times are accounted for
there is a clear difference in the performance of the different
motivators that is not apparent when only the number of
samples is considered. These results indicate that depend-
ing on the time a robot takes to execute actions different
motivators will provide better performance than others. For
instance, as seen by comparing the outcomes of (3¢ and Q1
the ME approach may not be the most efficient approach
when action execution dominates computation time, but it is
the most efficient approach when action execution time does
not dominate computation time. These results suggest that
we need to consider computation and query time to validate
the effectiveness of intrinsic motivators in deep sensorimotor
learning tasks even though these times are often omitted in
the active learning literature.

VI. CONCLUSIONS AND FUTURE WORK

Applying deep-learning techniques to robotics domains
remains an open challenge. In this paper, we have evaluated
the use of active learning techniques to better improve the
learning rates of self-supervised deep sensorimotor learning
approaches. The results indicate that intrinsic motivators
outperform random exploration and reduces the number of
actions and training time required for reliable performance.
Although no statistical differences are observed between the
intrinsic motivators when only the number of samples used

TABLE I: Statistically significant results (p < 0.05)

ME MEDO MEIN EE H R
ME - Q1 Q1 Q1,Q30 Q1 Q1,Q30, Qa
MEDO - Q1,Q30 | Q1.Q30 | Q1.Q30, Qa
MEIN - Q1.Q30 Q1 Q1.Q30, Qa
EE - Q30, Qa
H - Q30, Qa
R Q1 Q1 -

An entry in a table cell indicates that the approach of the row is statistically
significantly better performing than the approach in the column. Entries
indicate which setting is statistically significant (Q4, @30, Q1). The
absence of an entry indicates the performance of the pair is statistically
insignificant. For example, random approach outperforms EE and H in Q1.

TABLE II: The mean of ALC and Computation Time (CT)

ALC(QA) ALC(@30) ALC(Q1) CT (sec)
ME 0.811+0.02 | 0.761 £0.02 | 0.760 + 0.02 0.02
MEDO | 0.8150.01 | 0.766 & 0.01 | 0.741 £ 0.01 0.61
MEIN | 0.806 £ 0.02 | 0.760 & 0.01 | 0.733 & 0.02 0.62
EE 0.804 +£0.03 | 0.741+£0.02 | 0.624 +0.02 5.24
H 0.808 +£0.02 | 0.748 £0.02 | 0.641 +0.03 5.15
R 0.755 £ 0.03 | 0.708 £0.03 | 0.708 +£0.03 | 8.14x10~°

are considered, when we consider the computation time +
query time differences can emerge. As the results indicate,
if the robot can perform queries quickly (computation time
is not dominated by execution time), the maximum entropy
approach outperforms all other methods. However, when
execution time does not dominate computation time, other
approaches that better capture the uncertainty of the network
perform better.

Our results also indicate that using Expected Error Re-
duction as a motivator is not ideal for deep sensorimotor
learning because of both the computation time required and
the difficulty of estimating future uncertainty. Even when
the future entropy is approximated using just one sample,
significant computation time is required. With our dataset, if
neural networks do not have drop-out layers, the maximum
entropy or the maximum entropy with input noise can be
used to achieve equivalent performance to maximum entropy
with MC dropout. In future work, we would like to examine
these intrinsic motivators in other manipulation tasks such as
touching and pushing.

ACKNOWLEDGMENT

The authors would like to thank Jay Ming Wong for
his contributions. This material is based upon work sup-
ported under Grant NASA-GCT-NNX12AR16A. Any opin-
ions, findings, conclusions, or recommendations expressed
in this material are solely those of the authors and do not
necessarily reflect the views of the National Aeronautics and
Space Administration.

REFERENCES

[1]1 A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in Neural
Information Processing Systems (F. Pereira, C. J. C. Burges, L. Bottou,
and K. Q. Weinberger, eds.), 2012.

0.84(= Entropy
= Bayes ENTROPY
0.82}| — Noise Entropy
— Expected error
0.80 = Hybrid
0.78 random
v
@ 0.76
5 0.74
1%
L 0.72
©
o
9 0.70

2 0.68
0.66
0.64
0.62

0.69 200 300 400 500 600 700 800 900

The number of samples

Fig. 6: Mean test accuracy in terms of the number of actions
executed. A mean filter over five steps was applied.

uery-time = 30 sec

0.84/| = Entropy
= Bayes ENTROPY
0.82} — Noise Entropy
- Expected error
0.80 — Hybrid
0.78 random
O
o 0.76
-
S o074
|9}
O 0.72 4=
© U\ /0
+ 0.70 P |
w0 4//
@ 0.68 (/(AYY
{
0660 "
0.64f |
]~
0.621fi/ |
(I
il
0.60 3000 6000 9000 120001500018000210002400027000

Time (sec)

Fig. 7: Mean test accuracy over execution and computation
time. A mean filter over five steps was applied. Each query
took 30 seconds to execute but took varied times to compute.

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
et al., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, pp. 529-533, 2015.

D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den
Driessche, J. Schrittwieser, 1. Antonoglou, V. Panneershelvam,
M. Lanctot, et al., “Mastering the game of go with deep neural
networks and tree search,” Nature, vol. 529, no. 7587, pp. 484-489,
2016.

Y. Wu et al., “Google’s neural machine translation system: Bridg-
ing the gap between human and machine translation,” CoRR,
vol. abs/1609.08144, 2016.

L. Pinto and A. Gupta, “Supersizing self-supervision: Learning
to grasp from 50k tries and 700 robot hours,” arXiv preprint
arXiv:1509.06825, 2015.

S. Levine, P. Pastor, A. Krizhevsky, and D. Quillen, “Learning hand-
eye coordination for robotic grasping with deep learning and large-
scale data collection,” arXiv preprint arXiv:1603.02199, 2016.

T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforce-
ment learning,” arXiv preprint arXiv:1509.02971, 2015.

D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. A.
Riedmiller, “Deterministic policy gradient algorithms,” in Proceedings
of the 31th International Conference on Machine Learning, pp. 387—
395, 2014.

F. Zhang, J. Leitner, M. Milford, B. Upcroft, and P. Corke, “Towards
vision-based deep reinforcement learning for robotic motion control,”
arXiv preprint arXiv:1511.03791, 2015.

G. Baldassarre and M. Mirolli, Intrinsically Motivated Learning in
Natural and Artificial Systems. Springer Science & Business Media,
2013.

Query-time = 1 sec

0.84{[— Entropy
0.82 - Bayes ENTROPY
- == Noise Entropy
0.80|| — Expected error MWWW
— Hybrid v A o el
0.78/{ — random A At T
r,/\‘" i d
Y 0.76
E A
5 074 e
O
O 0.72
©
b 0.70
@ 0.68
0.66
0.64
0.62
| r / -
0.60. 1L =
0 100 200 300 400 500 600 700 800 900

Time (sec)

Fig. 8: Mean test accuracy over execution and computation
time. A mean filter over five steps was applied. Each query
took one second to execute but took varied times to compute.

(11]

[12]
[13]

[14]

[15]

[16]
[17]
[18]
[19]

[20]

[21]

[22]

[23]
[24]
[25]

[26]

[27]

(28]

A. Cangelosi, M. Schlesinger, and L. B. Smith, Developmental
robotics: From babies to robots. MIT Press, 2015.

C. Hull, “Principles of behavior,” 1943.

D. E. Berlyne, “Curiosity and exploration,” Science, vol. 153, no. 3731,
pp. 25-33, 1966.

A. G. Barto, S. Singh, and N. Chentanez, “Intrinsically motivated
learning of hierarchical collections of skills,” in Proceedings of the 3rd
International Conference on Development and Learning, pp. 112-19,
2004.

M. Lopes and P.-Y. Oudeyer, “Guest editorial active learning and in-
trinsically motivated exploration in robots: Advances and challenges,”
IEEE Transactions on Autonomous Mental Development, vol. 2, no. 2,
pp. 65-69, 2010.

B. Settles, “Active learning,” Synthesis Lectures on Artificial Intelli-
gence and Machine Learning, vol. 6, no. 1, pp. 1-114, 2012.

S. Tong, Active learning: theory and applications. Stanford University,
2001.

Y. Gal, R. Islam, and Z. Ghahramani, “Deep bayesian active learning
with image data,” CoRR, vol. abs/1703.02910, 2017.

O. Sener and S. Savarese, “Active Learning for Convolutional Neural
Networks: A Core-Set Approach,” ArXiv e-prints, Aug. 2017.

K. Wang, D. Zhang, Y. Li, R. Zhang, and L. Lin, “Cost-Effective
Active Learning for Deep Image Classification,” ArXiv e-prints, Jan.
2017.

J. A. Coelho and R. A. Grupen, “A control basis for learning
multifingered grasps,” Journal of Robotic Systems, vol. 14, no. 7,
pp. 545-557, 1997.

M. Huber, W. S. MacDonald, and R. A. Grupen, “A control basis for
multilegged walking,” in IEEE International Conference on Robotics
and Automation, Apr 1996.

Y. Nakamura, Advanced robotics: redundancy and optimization.
Addison-Wesley Longman Publishing Co., Inc., 1990.

F. Takens et al., “Detecting strange attractors in turbulence,” Lecture
notes in mathematics, vol. 898, no. 1, pp. 366-381, 1981.

N. Roy and A. McCallum, “Toward optimal active learning through
monte carlo estimation of error reduction,” 2001.

D. Ruiken, M. W. Lanighan, and R. A. Grupen, “Postural modes and
control for dexterous mobile manipulation: the umass ubot concept,” in
IEEE-RAS International Conference on Humanoid Robots, Oct 2013.
M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “Ros: an open-source robot operating
system,” in ICRA workshop on open source software, vol. 3, p. 5,
2009.

D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” arXiv preprint arXiv:1412.6980, 2014.

